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i

Should you read this manual?

If you would only like to use the basic functionality of SMOG v2 (i.e. the standard sup-

ported models), then you may find that the README file associated with the distribution

provides all the information you need. This manual provides a more detailed description

of the basic usage guidelines, in addition to advanced usage information and detailed

descriptions of the underlying methodologies/models. For basic users, if the README is

not sufficient, then Chapters 1, 2 and 3 will help you get started. For more advanced

users, who may wish to modify structure-based models (e.g. extending to new residue

types, ligands, electrostatics, etc), then consulting Chapters 4 and 5 will be necessary.

We additionally provide appendices that have technical details that may be of interest

to some users. While we try to provide all pertinent information here, don’t hesitate to

contact us for clarification.

SMOG v2, and all associated files, are distributed free of charge, made available under

the GNU General Public License.
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Chapter 1

Introduction

1.1 What are Structure-Based Models?

Structure-based models (i.e. SBMs, or SMOG models) define a particular known con-

formation as a potential energy minimum. With this being the only requirement, there

is an endless number of ways in which one may construct a structure-based model. For

example, one may build protein-specific and RNA-specific variants, the resolution of

the model can be varied, multiple minima may be included, and the degree to which

non-native interactions are stabilizing can be adjusted. The utility of these models is

equally diverse, where they may be applied for understanding dynamics, or for structural

modeling objectives, as discussed in recent review articles [1, 2]1. With such flexibility,

variations within this general class of models can be tailored to ask specific questions

about biomolecular processes. In the present document, we describe a set of computa-

tional tools that allows one to use previously-developed structure-based models, as well

as design and implement new variations that are suited for your specific needs.

In the simplest form, a structure-based model defines a single configuration as the global

potential energy minimum, where all intra- and inter-molecular interactions as assigned

minima that correspond to that structure. This fully native-centric variant of the model

is colloquially referred to as a “vanilla” structure-based model. In terms of the energy

landscapes of biomolecules, these vanilla models represent an energetically unfrustrated

landscape [3, 4]. Since biomolecular landscapes possess some degree of energetic rough-

ness, it is often desirable to extend structure-based models to include both native and

non-native interactions. As such, in the SMOG v2 software package, we provide two en-

ergetically unfrustrated models by default, upon which additional interactions may be

added by the user. Specifically, in this software package we provide the coarse-grained

1[1] available at http://smog-server.org/noel/book chapter sbm.pdf

1



Chapter 1. Introduction 2

Cα structure-based model for proteins, as developed by Clementi et al [5]. We also

provide the all-atom structure-based model, as developed by Whitford et al. [6]. While

the Cα model is only defined for proteins, the all-atom model supports proteins, RNA,

DNA and some ligands. While a complete description of the Cα model is available in the

original reference, there have been a number of extensions in the all-atom model over

the last several years. Accordingly, a complete description of the energetic parameters

are given in Appendix A.

1.2 What does SMOG v2 do?

SMOG v2 is a software package designed to allow the user to start with a structure of

a biomolecule (i.e. a PDB file) and construct a structure-based model, which is then

simulated using Gromacs [7], or NAMD [8]. We previously implemented an online server

(http://smog-server.org, [9]) that was capable of providing the vanilla flavor of structure-

based models, along with a few adjustable parameters (i.e. SMOG v1). SMOG v2 is a

complete rewrite of the original software package, and it provides four major advantages

over its predecessor:

• Extensibility – One may add new residue and molecule types without source-code

modifications.

• Portability – By building forcefield definitions on generally-defined XML-formatted

files, researchers may easily distribute and share new SMOG model variants.

• Generalizability – Every energetic parameter may be varied, and additional ener-

getic interactions (even non-native) may be included.

• Multi-resolution capabilities – All structural resolutions may be implemented, as

well as multi-resolution variations.

It is important to note that none of these new features require additional programming,

or source-code extensions. Rather, one simply adjusts the XML template files when

designing SMOG variants. Further, the templates are not statically-linked to SMOG

v2, allowing the user to easily choose from a library of models at runtime.
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“Installation”

Since SMOG v2 is written in Perl and Java there is no need for compilation and instal-

lation. However, one must configure a few settings and ensure that appropriate modules

are available at runtime. This section describes the steps necessary to configure and

verify that SMOG v2 is functioning properly on your local machine.

2.1 Prerequisites

SMOG v2 runs on all Unix-like operating systems. The prerequisites for SMOG v2 are

Perl Programming Language

Perl Data Language (PDL),

as well as the following modules, which are available through the Perl module managing

utility CPAN(recommended), or through manual installation:

String::Util

XML::Simple

Exporter

XML::Validator::Schema

Finally, your machine must have Java Runtime Environment v1.7 or greater.

2.2 Configuration

Before running SMOG v2, you must configure it on your local machine. This is accom-

plished through a short two-step process:

3

http://www.perl.org/
http://pdl.perl.org/?page=install
http://www.cpan.org/modules/INSTALL.html
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1) Set the required environmental variables. To do so, modify the file configure.smog2,

which is included with the distribution. Specifically, you will need to modify the follow-

ing two lines:

smog2dir=""

perl4smog=""

smog2dir is the main SMOG directory, and perl4smog is the version of perl that you

would like to use. On most linux systems, the default location of Perl is "/usr/bin/perl",

whereas on OSX it is typically "/opt/local/bin/perl"

2) Initialize the new environment variables with:

> source configure.smog2

This will set the required environment variables for your current session.

To automatically configure SMOG at login, you may want to add the above command

to your shell profile file (e.g. ~/.bashrc):

source /full-smog2-path/configure.smog2

and add

/full-smog2-path/configure.smog2/bin to your PATH.

3) Verify that java is installed (example output below)

> java -version

java version 1.7.0 25

Java(TM) SE Runtime Environment (build 1.7.0 25-b15)

Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)

If java is not found, make sure to install the JRE or JDK 1.7 or greater and that it is

in your path (accessible as: > java).

2.3 Verify SMOG is properly configured

If SMOG is properly configured, then you will be able to run smog with the following

command:
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> smog2

If configuration was successful, then you will be greeted with the following message:

In addition to verifying that SMOG v2 will start, it is highly recommended that you

also run the testing scripts provided as a tarball (smog-check.tar), which is available

at smog-server.org.

smog-check.tar contains two main test scripts. One script is very fast, whereas the

second is very comprehensive and can be used to test new SMOG models that you may

design. When everything works well, performing the the checks is as easy as issuing two

commands. Just make sure you run config.bash before running the tests.

While in the directory smog-check, issue the command:

./quick-check

For the comprehensive check (may take up to 30 minutes to complete):

./smog-check

If you find that either script reports failures, please communicate that to the smog-

server.org team, so that we may help diagnose the problem.
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Using SMOG v2

This chapter describes the usage of SMOG v2. It is recommended that all users read

this chapter before using the software.

3.1 Preparing the input PDB file

3.1.1 PDB file format

To prepare a SMOG model, a structural model (e.g. crystallographic, NMR, or cryo-EM

model) must be provided as a PDB file, in accordance with the PDB Content Guide,

page 187.

To avoid I/O issues, please follow these additional guidelines when preparing your PDB

file for use with SMOG v2:

• Only use a text editor (e.g. vi, or emacs) to prevent insertion of hidden characters.

• Only include lines that start with ATOM, HETATM, COMMENT(may be at the

beginning, or end of any chain), BOND (user-defined specific bonds. Must appear

after END), TER (to indicate a break between 2 chains) and END. Only BOND

and COMMENT lines may appear after END.

• Chain identifiers are ignored. If your system has multiple chains, insert TER lines

(left justified) between chains. NOTE: Do not immediately follow a TER line with

an END line. This is interpreted as a chain with 0 atoms, and an error message

will be issued.

6
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• Only residues, and atoms within a residue defined in the forcefield templates will

be recognized by SMOG v2. Unless a coarse-grained template is designated with

-tCG, unrecognized residues and atoms will lead to a PDB parse error, and the

program will exit.

3.1.2 Preprocessing

As discussed in Chapter 4, SMOG v2 reads “template” files in order to generate forcefield

files. As such, each PDB file has to fully conform to the molecular structure definitions

provided by the templates. For example, the default all-atom templates (provided in

SBM AA) distinguish between terminal and non-terminal residues (i.e. in proteins there

is an OXT in place of a peptide bond for terminal residues). In the default templates,

the terminal amino acid residues have an suffix “T” added to their their three-letter

code (e.g. GLY vs. GLYT).

A preprocessing tool (smog adjustPDB) is provided that will adjust your PDB to reflect

changes necessary to conform to the templates. Assuming $SMOG PATH/bin is in your

PATH, the preprocessing tool may be run with the following command :

> smog2 adjustPDB <PDB file> <default | -f mapFile> <outputPDB.pdb>

The first required input is the PDB file, the second required input is either the op-

tion default to use the map file provided with the program (for use with the default

SMOG models), or the option -f followed by your own map file. The map file should

be formatted as follows:

#/mapFile

#<Residue> <head-terminal> <tail-terminal>

ALA ALA ALAT

G G5 G

...

...

Lines containing a “#” character are interpreted as comments. Each line must have

three strings that are space/tab delimited. The first field is the original residue name,

as it appears in the original PDB file. The second is the name to be substituted if the

residue is the first residue in a chain, and the third field is the corresponding substitution

for the last residue in each chain. The preprocessing tool will write a modified PDB file
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outputPDB.pdb.

The script also numbers atom and residue indices to be sequential within each chain,

and it adjusts atom names to be consistent with the SBM AA template files.

3.2 Generating a Structure-Based Model

SMOG v2 supports a broad range of structure-based models, and the All-Atom [6], and

the Cα [5] models are provided as defaults. See Appendix A for full details of the default

models. By running SMOG, you will generate the .top, .gro, and .ndx files necessary to

perform a structure-based simulation in Gromacs or NAMD. Additional output files are

provided, for your information.

3.2.1 Default All-Atom Model

The all-atom potential energy function is defined through the template files found in the

directory $SMOG PATH/SBM AA. These files define:

1) the covalent geometry of amino acids, nucleic acids, some ligands, as well as bioinor-

ganic atoms.

2) the energetic and system parameters (e.g. mass, charge, interaction strengths).

To generate all-atom forcefield and coordinate files for the default model (i.e. .top and

.gro files), issue the command:

> smog2 -i yourFile.pdb -AA

where yourFile.pdb is the name of the file containing your molecular system.

If you would like to specify a different all-atom model, then use the command:

> smog2 -i yourFile.pdb -t templateDirName

where templateDirName is the name of the directory containing the desired template

files.

http://gromacs.org
http://www.ks.uiuc.edu/Research/namd/
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3.2.2 Default Cα model

To generate forcefield and coordinate files for the default Cα model, issue the command:

> smog2 -i yourFile.pdb -CA

If you would like to use a different set of CG templates:

> smog2 -i yourFile.pdb -t templateDirName -tCG CGtemplateDirName

Note that an additional set of templates are required when using a coarse-grained model.

The option -tCG is used to indicate the precise coarse-grained model that should be pre-

pared. When -tCG is given, then the -t flag is used to designate the templates that

initially process the PDB for contact analysis. Normally an all-atom PDB is provided,

since native contact maps make the most sense when generated from an all-atom struc-

ture (note that the “Shadow” map only makes sense with atomic graining). The -tCG

templates are then used to construct the CG energetic model. In the above example,

the PDB has residues and atoms corresponding to the -t templates, and these definition

will also be used for contact map generation. See Appendix B for a detailed description

of the supported contact map calculations.

3.3 Input options

SMOG v2 always requires a PDB file and some argument indicating that model should

be used. Table 3.1 shows the currently-supported input arguments.

3.3.1 User-provided contact map

If you have generated contacts yourself, these can be used instead of using the internal

SMOG2 routines. A single file containing all the contacts in a list can be specified at

the command line with the switch -c. For example:

> smog2 -i <pdbfile> -c contacts.txt ...

will read the list of contacts in file contacts.txt

chainNum i1 atomNum i1 chainNum j1 atomNum j1 (opt. distance)

chainNum i2 atomNum i2 chainNum j2 atomNum j2 (opt. distance)
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Input Option Usage Default value

Required

-i <file name> Input PDB file to define the model none

Optional

-t <Folder Name> Folder containing templates of
molecular and interaction defini-
tions

none

-AA Use the default all-atom model N/A

-CA Use the default Cα model N/A

-tCG <Folder Name> Folder containing templates used for
coarse graining. Only necessary
when CG enabled

none

-c <string> Input contact file name none

-g <string> Output .gro file name smog.gro

-o <string> Output .top file name smog.top

-s <string> Output .contacts file name smog.contacts

-n <string> Output .ndx file name smog.ndx

-dname <string> Default name to use for all output
files.

none

-backup [yes/no] Enable/disable generation of backed
up outputs.

none

-warnonly Report fatal errors as warnings N/A

-limitbondlength If bond length exceeds limits, set it
to the limiting value

N/A

-limitcontactlength If contact length exceeds limits, set
it to the limiting value

N/A

Table 3.1: Flags supported by SMOG v.2.0

chainNum i3 atomNum i3 chainNum j3 atomNum j3 (opt. distance)

etc ...

which should be formatted as a single line per contact, whitespace delimited, where each

line has the two atoms interacting and their respective chain numbers. The chains are

numbered starting from 1 by the order of occurence in the PDB file. The atomNum

should be consistent with atom numbers in the input PDB file. The fifth column can

contain a numeric distance in Å which if provided will be used instead of the native

distance. If using -tCG to obtain a coarse grained topology, the input contact map should

designate residue numbers instead of atom numbers, again with the same numbering in

the input PDB file.
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3.4 Performing a simulation in Gromacs/NAMD

Once you have generate the .top and .gro files with SMOG, you are ready to perform

a simulation. Rather than write a new molecular dynamics simulation package, SMOG

generates input files for use with Gromacs[7] and NAMD [8], two highly-optimized and

parallelized MD software suites. This allows you to use nearly every protocol that

has been implemented in these programs when performing simulations with structure-

based models (e.g. replica exchange, umbrella sampling). In addition, both of these

packages are scalable to many processors through a combination of MPI and thread-

based parallelization, allowing SMOG models to fully take advantage of cutting-edge

computing resources. Here, we provide brief descriptions of how to perform SMOG

model simulations in Gromacs and NAMD. More complete resources on performing these

types of simulations may be found at http://smog-server.org in the NAMD manual.

3.4.1 Gromacs 4.5 or 4.6

3.4.1.1 All-Atom Model

First, produce a portable xdr file (in this case, run.tpr) that describes your simulation.

This file is platform independent and contains all parameters for your simulations. This

allows you to produce a tpr file on any machine, and then move it to another machine

and run your simulation. The xdr file is produced by grompp (part of the Gromacs

distribution):

> grompp -f mdpfile.mdp -c gro file.gro -p top file.top -o run.tpr

The file mdpfile.mdp tells Gromacs what settings to use during the simulation, such

as the timestep size, the number of timesteps and what thermostat to use. Here is a

sample set of configurations that are consistent with the default all-atom model:

integrator = sd ;Run control: Use Langevin Dynamics protocols.

dt = 0.002 ;time step in reduced units.

nsteps = 100000 ;number of integration steps

nstxout = 100000 ;frequency to write coordinates to output trajectory .trr file.

nstvout = 100000 ;frequency to write velocities to output trajectory .trr file

nstlog = 1000 ;frequency to write energies to log file

nstenergy = 1000 ;frequency to write energies to energy file

nstxtcout = 1000 ;frequency to write coordinates to .xtc trajectory

xtc_grps = system ;group(s) to write to .xtc trajectory (assuming no ndx file is supplied to grompp).

energygrps = system ;group(s) to write to energy file

nstlist = 20 ;Frequency to update the neighbor list

coulombtype = Cut-off
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ns_type = grid ; use grid-based neighbor searching

rlist = 1.2 ;cut-off distance for the short-range neighbor list

rcoulomb = 1.2 ; cut-off distance for coulomb interactions

rvdw = 1.2 ; cut-off distance for Vdw interactions

pbc = no ; Periodic boundary conditions in all the directions

table-extension = 10 ; (nm) Should equals half of the box’s longest diagonal.

tc-grps = system ;Temperature coupling

tau_t = 1.0 ; Temperature coupling time constant. Smaller values = stronger coupling.

ref_t = 120.0 ; In reduced units (see Gromacs manual for details)

Pcoupl = no ;Pressure coupling

gen_vel = yes ;Velocity generation

gen_temp = 50.0

gen_seed = -1

ld_seed = -1

comm_mode = angular ; center of mass velocity removal.

Listing 3.1: Sample mdp file for all-atom SMOG models used for Gromacs v4.5/4.6

After you have generated the .tpr file with grompp, you will need to perform the simu-

lation. To run the simulation, issue the command:

> mdrun -s run.tpr -noddcheck

Is is highly recommended that you explore all Gromacs options, in order to ensure max-

imum performance (e.g. the number of threads being used). SMOG-model specific

requirement: To use domain decomposition when performing a simulation in parallel,

using either threads, or MPI, you should add the additional flag -noddcheck. Note, that

for protein folding you will probably want to avoid domain decomposition, and instead

use particle decomposition by adding the option -pd when on a single node.

3.4.1.2 Cα Model

To run a simulation with the Cα model, the steps are the same as for the AA model,

though there are a few minor changes. First, when running grompp, you will want to

change a few settings in the .mdp file. A sample .mdp file for Cα models is given below.

integrator = sd ;Run control: Use Langevin Dynamics protocols.

dt = 0.0005 ;time step in reduced units.

nsteps = 100000 ;number of integration steps

nstxout = 100000 ;frequency to write coordinates to output trajectory .trr file.

nstvout = 100000 ;frequency to write velocities to output trajectory .trr file

nstlog = 1000 ;frequency to write energies to log file

nstenergy = 1000 ;frequency to write energies to energy file

nstxtcout = 1000 ;frequency to write coordinates to .xtc trajectory

xtc_grps = system ;group(s) to write to .xtc trajectory (assuming no ndx file is supplied to grompp).

energygrps = system ;group(s) to write to energy file

nstlist = 20 ;Frequency to update the neighbor list

coulombtype = Cut-off

ns_type = grid ; use grid-based neighbor searching
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rlist = 3.0 ;cut-off distance for the short-range neighbor list

rcoulomb = 3.0 ; cut-off distance for coulomb interactions

rvdw = 3.0 ; cut-off distance for Vdw interactions

coulombtype = User

vdwtype = User

pbc = no ; Periodic boundary conditions in all the directions

table-extension = 10 ; (nm) Should equals half of the box’s longest diagonal.

tc-grps = system ;Temperature coupling

tau_t = 1.0 ; Temperature coupling time constant. Smaller values = stronger coupling.

ref_t = 120.0 ; In reduced units (see Gromacs manual for details)

Pcoupl = no ;Pressure coupling

gen_vel = yes ;Velocity generation

gen_temp = 50.0

gen_seed = -1

ld_seed = -1

comm_mode = angular ; center of mass velocity removal.

Listing 3.2: Sample mdp file for Cα SMOG models used for Gromacs v4.5

The most significant difference is the use of “User-defined” Vdw and Coulomb inter-

actions. This is due to the fact that the 10-12 potential used for contact interactions

in the Cα model. In order to run mdrun (next step), it is necessary to generate table

files that define the 10-12 interaction. We provide a tools for generating these tables

($SMOG PATH/bin/smog tablegen) with the SMOG2 distribution. The table can be

generates in a single step

$SMOG PATH/bin/smog tablegen <M> <N> <ion conc.> <elec. switch dist.> <elec.

truncate dist.> <table length> <output name>

M the exponent on the attractive term, N is the exponent on the repulsive term. If

you are not including electrostatics (most common), then provide values of 0 for <ion

conc.>, <elec. switch dist.> and <elec. truncate dist.>. <table length>

indicates how long the table should be, in nanometers. It is important that the table is

longer than any native contacting pair of atoms may be during the simulation. Finally,

the last argument is the filename for the table file. If you don’t use a .xvg suffice, the

script will add one for you.

After you have generated your tabulated potentials for the 10-12 interaction (i.e. ta-

ble file.xvg), and you have prepared a .tpr file with grompp, you can run the simulation

with the command:

> mdrun -s run.tpr -noddcheck -table table file.xvg -tablep table file.xvg

Typically, for protein folding, you will want to avoid domain decomposition and instead

use particle decomposition by adding the option -pd when on a single node. After you

perform your simulation, you can utilize any analysis tools provided with Gromacs.
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3.4.1.3 Examples

Check $SMOG PATH/examples/gromacs4 for some complete examples with terminal

history.

3.4.2 Notes and Hints

3.4.2.1 Domain Decomposition

The [ pairs ] section is treated as bonded by Gromacs and therefore all pairs within

a single domain are always calculated. If you are using -pd with version 4.X or only

OpenMP threads in version 5.0, you can reduce the cutoffs to values that ignore the

pair distances and only take into account the non-bonded excluded volume (provided

you have no electrostatics of course). For the default models this would be 0.6 for -AA

and 1.0 for -CA.

3.4.3 Gromacs 5

Gromacs 5 has a few changes that impact SMOG models. First, we don’t yet provide

a Gromacs 5 distribution with the SMOG enhancements (umbrellas, g kuh, gaussian

contact potentials). So, if you want to use these you can only use Gromacs 4.5. Gromacs

5 itself has changes of note: 1) OpenMP support has replaced the option of particle

decomposition and 2) OpenMP requires cutoff-scheme=Verlet and Verlet doesn’t yet

allow tabulated potentials. This has the largest impact on C-alpha models, which use

tabulated potentials. If your simulated system has less than roughly 100 atoms, you can

typically only use a single processor with v5, because additional threads are only allowed

through OpenMP. If your system is large enough you can use multiple MPI processes

with domain decomposition to scale to multiple cores. When using Verlet lists you have

to use pbc = xyz. For all-atom simulations, Verlet lists are fine, and it is usually best

to use as many OpenMP threads as possible with -ntomp.

3.4.3.1 Examples

Check $SMOG PATH/examples/gromacs5 for complete examples, including terminal

history.
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3.4.4 NAMD

The forcefield files generated by SMOG v2 are fully compatible with NAMD. To perform

SMOG models in NAMD, please consult the NAMD manual. A tutorial is available:

http://vidar.scs.uiuc.edu/jlai7/Tutorial/GoDemo.pdf.

http://www.ks.uiuc.edu/Research/namd/2.10b1/ug/node70.html


Chapter 4

Template-Based Approach

4.1 Introduction to templates

SMOG v2 offers increased versatility over SMOG v1 [9] by shifting to a template-based

approach for defining molecular structures. Each template allows for direct control of

the structure-based energy function, which may include (but is not limited to) multi-

resolution models, and models that include non-specific interactions. The plug-and-play

nature of the templates has the additional advantage of forcefield portability and easy

sharing of user-created variations of structure-based potentials.

A single SMOG “template” is comprised of four XML-formatted files. These files are

absolutely necessary when using SMOG v2. XML format was adopted because of its

consistent formatting, ease of editability and readability, and there are widely available

program modules to generate, and parse XML files. Furthermore, XML allows for

schemas, a form content format restriction file, to which the template files must conform,

which adds an additional layer of error checking capabilities. This chapter assumes that

the user knows the basics of XML formatting. Users unfamiliar with XML formatting

may want to check out the W3schools’ website.

Table 4.1 summarizes the purpose of each template file. In Chapter 5, we show how to

add new new residue to the template files for an All-Atom structure-based model.

4.2 SMOG v2 Templates

SMOG v2 expects four template files to be present in a single folder (i.e. the template

folder). As discussed in Chapter 3, the template folder name is a required argument

when running SMOG v2. A template folder can only contain one of each file type. If

16

http://www.w3schools.com/xml/xml_whatis.asp
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File Purpose

Biomolecular Information File (.bif) Defines the structure of
biomolecules to be supported

Setting Information File (.sif) Defines interaction function
declarations

Bond Information File (.b) Defines bonded interactions
between atoms

Nonbond Information File (.nb) Defines non-bonded interac-
tions between atoms

Table 4.1: Descriptions of the 4 files that comprise a single template. The expected
suffix of each file is shown in parentheses.

your template folder contains more than one file of a specific file type, the program will

exit with an error. Each file contains unique information, as described below.

4.2.1 Biomolecular Information File (.bif)

The Biomolecular Information File (from here on called .bif) defines the covalent struc-

ture of all residues described by a particular forcefield. The .bif file is used to extract the

appropriate coordinate information from the PDB file. Since the PDB file only provides

the coordinates, numbers and names of atoms and residues, the residue definitions in the

.bif file are used in conjunction with the PDB file to build a forcefield for a particular

biomolecule. Each residue is defined in the .bif file by declaring all the atoms in that

residue, the bonds between the atoms and the improper dihedrals between the atoms.

Residues

Each residue is individually defined between the <residues> and </residues> tags. As

an example, the text below shows how one would define the residue ALA, which contains

5 atoms.

1 <residue name="ALA" residueType="amino" atomCount="5">

2 <atoms>

3 <atom bType="B_1" nbType="NB_1" pairType="P_1">N</atom>

4 <atom bType="B_1" nbType="NB_1" pairType="P_1">CA</atom>

5 <atom bType="B_1" nbType="NB_1" pairType="P_1">C</atom>

6 <atom bType="B_1" nbType="NB_1" pairType="P_1">O</atom>

7 <atom bType="B_1" nbType="NB_1" pairType="P_1">CB</atom>

8 </atoms>

9 <bonds>

10 <!--BACKBONE-->

11 <bond energyGroup="bb_a">

12 <atom>N</atom>

13 <atom>CA</atom>

14 </bond>

15 <bond energyGroup="bb_a">
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16 <atom>CA</atom>

17 <atom>C</atom>

18 </bond>

19 <bond energyGroup="bb_a">

20 <atom>C</atom>

21 <atom>O</atom>

22 </bond>

23 <!--FUNCTIONAL GROUP-->

24 <bond energyGroup="sc_a">

25 <atom>CA</atom>

26 <atom>CB</atom>

27 </bond>

28 </bonds>

29 <impropers>

30 <improper>

31 <atom>CB</atom>

32 <atom>CA</atom>

33 <atom>C</atom>

34 <atom>N</atom>

35 </improper>

36 </impropers>

37 </residue>

Listing 4.1: Residue section of .bif file

The attribute name is the name of the residue, as used in your PDB file. The attribute

residue residueType is the type of residue, in this case, an amino residue. Finally the

optional attribute atomCount allows the user to explicitly set the total number of atoms

to be counted for normalizing energies. That is, the total atom count is used in the

energetic scaling procedure of dihedrals and contact energies, as described in Appendix

A. This feature is useful when including many copies of a ligand in your system, since

the energetic normalization should only be based on the protein, or RNA, and not the

multiply-copied ligands. In such a scenario, the user would set atomCount to 0. If

atomCount is not defined, SMOG v2 automatically uses the total number of atoms

listed under the <atoms> tag.

The <atoms> tag declares all the atoms in the residue. Note that all the atoms within a

specific residue in your PDB must be listed here. If the PDB and .bif are not consistent,

the program will terminate with an error. This is the reason that the default templates

differentiate between the C-terminal and non-terminal protein residues (See Chapter 3).

Each atom has a bond type bType, a non-bond type nbType and a pair type pairType.

The bond type attribute is used in the generation of the bonded interactions (bonds,

angles, and dihedrals). Likewise, the non-bond type attribute is used in the generation

of the non-bonded interactions. The pairType attribute is used in the generation of

contact interactions (6-12, 10-12 or Gaussian interactions).
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The <bonds> tag contains all the bonds that should be present in the residue. Each bond

in a residue is listed under the <bond> tag. The atom names must match those listed in

the <atoms> field. The bond tag also has an attribute called energyGroup that allows

for one to define heterogeneous energetics in the system. The energy group attribute is

used in conjunction with the bond types to determine the dihedral interaction. Using

the bonds declared here, the program dynamically calculates all angles and dihedrals

that can exist in the molecule.

The <impropers> tag contains all the improper dihedral angles in the biomolecule. The

tag <improper></improper> holds four atom tags. The order of the four atoms defines

a specific improper dihedral within a residue. This feature is used to add dihedrals that

cannot be determined based on bond geometry.

Connections

In addition to defining a residue, the .bif file is also used to define how sequential

residues are covalently connected. Listing 4.2.1 shows how two residues of type amino

are covalently linked. The attribute residueType1 and residueType2 declares how a

residue of type residueType1 at position n should be connected to a residue of type

residueType2 at position n+1. The residue types are matched based on the residue

definitions. Much of the structure of the connection element is similar to that of the

residue element. There is a single bond, whereby the first atom belongs to the nth residue

and the second atom belongs to the (n+1)th residue. We can also define, though not

a requirement component of all connection definitions, a single improper dihedral. In

the context of impropers, the special character suffix “+” is used to declare atoms that

belong to the (n+1)th residue. In the code listing, the N atom belongs to the (n+1)th

residue.

1 <connections>

2 <!-- AMINO/AMINO -->

3 <connection name="amino-amino" residueType1="amino" residueType2="amino">

4 <bond energyGroup="r_a" >

5 <atom>C</atom>

6 <atom>N</atom>

7 </bond>

8

9

10 <improper>

11 <atom>O</atom>

12 <atom>CA</atom>

13 <atom>C</atom>

14 <atom>N+</atom>

15 </improper>

16 </connection>
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Listing 4.2: Connection section of .bif file

4.2.2 Setting Information File (.sif)

While the .bif file is used to define the covalent geometry of each residue, the Setting

Information File (.sif) is used to control the distribution and functional form of the

energetics, which includes the inter-dihedral dihedral ratios, contact-to-dihedral ratios,

contact map settings and function declarations.

Functions

The <functions> tag should list all the functions that the model requires.

1 <functions>

2 <function name="bond_harmonic" directive="bonds"/>

3 <function name="bond_type6" directive="bonds"/>

4 <function name="angle_harmonic" directive="angles"/>

5 <function name="angle_free" directive="angles"/>

6 <function name="dihedral_cosine" directive="dihedrals"/>

7 <function name="dihedral_harmonic" directive="dihedrals"/>

8 <function name="dihedral_free" directive="dihedrals"/>

9 <function name="contact_1" directive="pairs" exclusions="1"/>

10 <function name="contact_2" directive="pairs" exclusions="1"/>

11 <function name="contact_gaussian" directive="pairs" exclusions="1"/>

12 </functions>

Listing 4.3: Example of functions section of a .sif file

Each function is defined using the <functions> tag. These function names are mapped

to specific subroutines in src/smogv2. To add a new interaction type, follow the exam-

ples already in the code. Note: These functions are simply mappings to already defined

Gromacs interactions. If it doesn’t exist in Gromacs, it won’t help to add it here. The

interactions currently in the code are listed in Table 4.2. If you add useful interactions

please let us know so that we can incorporate them into the default distribution.

Group Settings

The structure-based model has two classes of energy groups: contact groups, and dihe-

dral groups. Each contact group represents a collection of contacts, and each dihedral

1Can be designated as a contact potential in .nb for applications like restraining bound ions or elastic
network models.

2Minimum at native distance if using ? for c6/c12.
3Minimum at native distance if using ? for cN/cM. Need to include a table file with -tablep with

mdrun
4Details in Appendix A.3.4.1.
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Name .top ftype Input Parameters

bond harmonic [ bonds ] 1 r0, k

bond type61 [ bonds ] 6 r0, k

angle harmonic [ angles ] 1 θ0, k

dihedral harmonic [ dihedrals ] 2 φ0, k

dihedral cosine [ dihedrals ] 1 φ0, k, multiplicity

contact 12 [ pairs ] 1 N, M, c6, c12

contact 23 [ pairs ] 1 N, M, cN, cM

contact gaussian4 [ pairs ] 6 εC, rNC , σ, r0

Table 4.2: Functions available in SMOG2.

group represents a collection of dihedrals. These energy groups are used for energetic

scaling of interaction strength.

HAA = ... +
∑

backbone

εBBFD(φ) +
∑

sidechain

εSCFD(φ) (4.1)

+
∑

contacts

εCFcontacts(r) + ... (4.2)

Shown above is the All-Atom Hamiltonian with only the dihedral and contact terms.

Shown below are the energetic scalings of the dihedral and contact terms, and their

respective attributes under the .sif file.

εBB
εSC

=
intraRelativeStrength bb

intraRelativeStrength sc
(4.3)

∑
εBB +

∑
εSC +

∑
εC = Total non-ligand atoms (4.4)

∑
εBB +

∑
εSC∑

εC
=

dihedrals groupRatio

contacts groupRatio
(4.5)

The program automatically calculates the total number of non-ligand atoms used in the

energetic scaling. Although the scaling equations shown above is limited to residue types

with only two dihedral types (backbone and sidechain dihedrals), and single contact type,

the program allows for scaling equations to be generalized to more than two dihedral

types and more than one contact type. The energy group ratios are contained within

the <Groups> tag.

1 <energyGroup name="bb_n" residueType="nucleic" intraRelativeStrength="1" normalize="1"/>
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2 <energyGroup name="sc_n" residueType="nucleic" intraRelativeStrength="1" normalize="1"/>

3 <energyGroup name="pr_n" residueType="nucleic" normalize="0"/>

4 <energyGroup name="ip_n" residueType="nucleic" normalize="0"/>

5 <energyGroup name="r_n" residueType="nucleic" normalize="0"/>

6 <contactGroup name="c" intraRelativeStrength="1" normalize="1"/>

7 <groupRatios contacts="2" dihedrals="1"/>

Listing 4.4: Energy group section of .sif file

The two classes of energy group ratios, dihedral and contact ratios, are controlled under

the <energyGroup> and <contactGroup> tags respectively. The residueType attribute

is used to designate the residue type the scaling factors of a particular energy group is

used for. The name attribute is the label for the energy group. The name attribute

used here is matched to the energyGroup attribute under <bond> tag in the .bif file.

The name of a particular contact energy group will be used later when declaring contact

interaction functions in the subsequent section of this chapter.

The normalize attribute for each energy group is a boolean attribute (1 or 0), and is

used to determine if a particular energy group is to be included in energy normalization

(see equation 4.4). For the All-Atom model, the dihedral group with the name “pr n”

(which represents the nucleic planar rigid dihedrals) has a normalize option set to 0,

indicating that planar dihedral in nucleic acids will not be part of the normalization. In

contrast, in the All-Atom model, sidechain dihedrals are normalized, as are backbone

dihedrals and contact energies. Accordingly, those energy groups have the normalize

option set to 1. The intraRelativeStrength attribute is the relative ratio of stabilizing

energy within the different class of energy group for a particular residue (see equations

4.3).

Finally we use the <groupRatios> tag to set the energy partition between the two classes

of energy group according to equation 4.5.

4.2.3 Bond Information File (.b) & Nonbond Information File (.nb)

The .b file is used to define all bonded interactions, which includes bonds, angles, and

dihedral. The .nb file is used to define all the non-bonded interactions, such as contacts,

1-4 pairs, and excluded volume.

Bonded Interactions

We first discuss how to define a basic bond interaction for the All-atom model.
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1 <!-- BONDS -->

2 <bonds>

3 <bond func="bond_harmonic(?,10000)">

4 <bType>*</bType>

5 <bType>*</bType>

6 </bond>

7 <bond func="bond_type6(?,200)">

8 <bType>*</bType>

9 <bType>MG</bType>

10 </bond>

11 </bonds>

Listing 4.5: Bonds section of .b file

Recall that each atom is given a bType when they are declared in the .bif file. Given

a particular bonded interaction (bonds, angles, dihedrals, impropers), the functional

form for a bonded interaction is assigned by matching the combination of the bTypes in

that interaction. The first <bond> tag (line 3 in Listing 4.5) is used assign a function

called bond harmonic to two bonded atoms of any type. Since the vanilla model has

only B 1 atoms, the *s could be replaced with B 1, and the same bonds would be

assigned. Recall under Listing 4.3, line 2, we defined bond harmonic() as a type 1

function under the bonds directive (harmonic bond function). The input parameters

for bond harmonic() are r0 and εbond. In this case we use the special character “?” to

tell SMOG to calculate the native bond length (r0) from the PDB structure file. You

can instead also give an empirical value for the bond distance. This feature is useful

when adding nonspecific/empirical terms (e.g. an AMBER/CHARMM backbone) to

the Hamiltonian.

The bType attribute here can take either an exact bond type or a special wildcard “*”

character that matches to all available bTypes. For the case of the All-Atom model,

since all the bType is identical, we can instead also defined the bond interaction as

shown under the <bond> tag in line 8 of Listing 4.5. Please note that the program

will assign the interaction that most closely matches the bTypes of a given

4-atom pair. One needs to be careful not to declare interactions that conflict with

one another. For example, if your system contains a bond between atoms of bType B 1

and B 2, and bond definitions are only given for bTypes B 1-* and B 2-*, then SMOG

would not know which function to apply, and it will exit with an error. However, if one

also explicitly defined a bond function for B 1-B 2 pairs, that bond would take priority.

The angle interaction follow a similar form as bonds, but instead of expecting two bType

attributes, it requires three. The bType attribute in this case is symmetric to the central

bType. When matching bond angles, the angle definition that matches the most atoms
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identically will be used. Again, if an equal number of atoms match in multiple angle

definitions, there would be ambiguity, and SMOG will quit.

The “dihedral cosine” function is classified under the dihedral directive with function

type 1 in the .sif file (Listing 4.3 line 3). The arguments are of the form (φ0, εd,mult).

As introduced earlier the special character “?” tells the program to calculate the native

value from the PDB structure file. In this case we ask the program to calculate the

dihedral angle for all dihedral interactions that involve the bType combination *-*-*-*.

By using the “?” argument, along with a multiplicity factor (third argument), we tell

the program to multiply all the φ0 values by the multiplicity factor. More generally,

one may provide any function for the angle calculation. For example, if you were to use

(?*2-1), the angle would be evaluated as: native angle, times 2 and minus 1.

FD(φ) = (1− cos(φ− φ0)) + 0.5(1− cos(3(φ− φ0))) (4.6)

Equation 4.6 shown above is the dihedral interaction function used in the All-Atom

model. The code Listing 4.6 shown below shows how to define the second term of

FD(φ)

1 <dihedral func="dihedral_cosine(?,?,3)+dihedral_cosine(?,?,1)" energyGroup="bb_n">

2 <bType>*</bType>

3 <bType>*</bType>

4 <bType>*</bType>

5 <bType>*</bType>

6 </dihedral>

Listing 4.6: Dihedral section of .b file

Finally multiple function can be applied to the same dihedral angle by including a sum

of functions (e.g. func=“f(..)+g(..)+h(..)”).

The special keyword “?” has limitations in where it can be used. For bonds and angles,

it can only be used for the first input parameter to a function. For dihedrals declared

as type 1, it can be used for the first two input parameters to a function. In the case of

dihedrals, the second input parameter for a type 1 dihedral is the energetic scaling term.

The “?” option is used to tell the program that the dihedral is considered under the

global energy normalization procedure. εd is dynamically calculated by the program.

A note on assigning dihedrals: As with bonds and angles, it is quite easy to provide

multiple bType sequences that will match to the same atoms in a system. For example,

if you define a dihedral function for B 1-B 2-*-*, as well as B 1-*-*-*, then a dihedral in

your system between atoms (B 1,B 2,B 1,B 1) would match both. To determine which
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function should be applied, a scoring function S is used. S is defined as 2 times the

number of exactly matching bTypes, plus 1 times the number of wildcard matches. If any

one of the atoms does not have an exact match, nor a wildcard, then S = 0. According

to this criteria, S = 6 for the first definition and S = 5 for the second. Accordingly, the

B 1-B 2-*-* definition would take priority. If two dihedrals have equal S values, S = 0

for all dihedral functions, then the program will quit with an error.

Non-Bonded Interactions

The .nb files is used to generate non-bonded interactions such as native contacts and

non-specific interactions.

1 <!-- DEFAULTS -->

2 <defaults gen-pairs="0"/>

3 <!-- GENERAL NONBONDS -->

4 <nonbond mass="1.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">

5 <nbType>NB_1</nbType>

6 </nonbond>

7 <!-- CONTACTS -->

8 <contact func="contact_1(6,12,?,?)" contactGroup="c">

9 <pairType>*</pairType>

10 <pairType>*</pairType>

11 </contact>

Listing 4.7: Contacts section of .nb file

Listing 4.7 shows how to define non-bonded and native contact parameters. The nbType

value defined for each atom in the .bif is matched to the nonbond declaration.

Note: the contacts are placed in the [ pairs ] section in the topology file which was

originally used for 1-4 pair interactions. For structure based models, it has been applied

to include native contacts.

For structure-based models, a non-bonded interaction is a volume exclusion interaction

usually defined as the Lennard-Jones 12 term. Gromacs generates these interactions

using the information provided in the [ defaults ] and the [ atomtypes ] sections.

The non-bonded interaction declaration in SMOG2 contains the atom attributes: mass,

charge and atom type, as well as the explicit c6 and c12 terms for the Lennard-Jones

function. If one wanted to include non-specific attractive interactions between atoms,

then a non-zero value should be given for the c6 parameter.

A contact function declaration includes the additional contactGroup attribute, which is

used to map the function to specific groups of contacts. For example, in Listing 4.4, the

contact group c was declared with intraRelativeStrength=1 and normalize option set to

1 (true).
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SMOG2 supports two types of interactions for native contacts. Since the contact inter-

actions are unique to SMOG v2, refer to Table 4.2 for how SMOG2 expects the input

parameters. In code Listing 4.7, the contact parameters εC, c6, and c12 are calculated

automatically by the program using energy normalization and the PDB structure be-

cause of the 3 ?. εC is also calculated dynamically through the scaling equations. If one

uses the 10-12 or N-M functions, table files have to be included (see Section 3.4.1.2 for

syntax and details.)



Chapter 5

Adding a new residue

This chapter provides a step-by-step tutorial on how to add a new residue type using

SMOG v2 template files.

5.1 Step 1 - Examine the molecular structure

The residue 2-methylthio-N6 isopentenyl adenosine (MIA) is a modified nucleic acid

residue that is present in many RNA structures. It is identical to Adenine, except there

are a few additional carbon atoms and a sulfur atom ligated to XXX. For the purposes

of demonstrating We would also like to define a larger mass for sulfur atom.

Make sure to have the correct chemical structure of your molecule. A useful method is

to visually inspect it with a molecular visualization program (VMD for example):

27
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5.2 Step 2 - Create a new All-Atom template directory

Since we’re going to explicitly define each atom in the MIA residue, the model used here

will be All-Atom model. You can modify the default All-Atom directory provided by

Smog2 - SBM AA or create a copy of it in your working directory to make the changes in

the template files. In this example we will modify the existing AA-whitford09.bif and

AA-whitford09.nb files.

5.3 Step 3 - Define a new residue

As mentioned in chapter 4, the biomolecular information file (.bif) declares the struc-

ture of all biomolecules in your system. Here we will define the residue information

by declaring all of the atoms, bonds and improper dihedrals within the residue. The

full modified file can be found in the XMLcode examples/AA-whitford09 withMIA.bif

directory.

5.3.1 Place the new residue tag in the .bif file

As you get acquainted with the AA-whitford09.bif file structure, you’ll find that the

residues appear grouped together according to their type: Ligands, amino and nucleic

residues. The residue type of MIA is nucleic, so it is added for convenience next to the

existing nucleic residues. The <residue> tag encapsulates all of the residue information.

2945 <!-- NUCLEIC RESIDUES -->

2946

2947 <!--2-methylthio-N6 isopentenyl adenosine-->

2948 <residue name="MIA" residueType="nucleic">

2949 <atoms>

2950 </atoms>

2951 <bonds>

2952 </bonds>

2953 <impropers>

2954 </impropers>

2955 </residue>

2956

2957 <!--RNA A-->

2958 <residue name="A" residueType="nucleic">

Listing 5.1: Nucleic residue section of .bif file

Keep in mind that the attribute name should match the residue name in the PDB file.
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5.3.2 List all of the atoms in the residue

List all of the atom names in your residue as they appear in your PDB. The <atoms>

tag encapsulates all the atoms in the biomolecule.

2945 <!-- NUCLEIC RESIDUES -->

2946

2947 <!--2-methylthio-N6 isopentenyl adenosine-->

2948 <residue name="MIA" residueType="nucleic">

2949 <atoms>

2950 <atom bType="B_1" nbType="NB_1" pairType="P_1">P</atom>

2951 <atom bType="B_1" nbType="NB_1" pairType="P_1">O1P</atom>

2952 <atom bType="B_1" nbType="NB_1" pairType="P_1">O2P</atom>

2953 <atom bType="B_1" nbType="NB_1" pairType="P_1">O5*</atom>

2954 <atom bType="B_1" nbType="NB_1" pairType="P_1">C5*</atom>

2955 <atom bType="B_1" nbType="NB_1" pairType="P_1">C4*</atom>

2956 <atom bType="B_1" nbType="NB_1" pairType="P_1">O4*</atom>

2957 <atom bType="B_1" nbType="NB_1" pairType="P_1">C3*</atom>

2958 <atom bType="B_1" nbType="NB_1" pairType="P_1">O3*</atom>

2959 <atom bType="B_1" nbType="NB_1" pairType="P_1">C2*</atom>

2960 <atom bType="B_1" nbType="NB_1" pairType="P_1">O2*</atom>

2961 <atom bType="B_1" nbType="NB_1" pairType="P_1">C1*</atom>

2962 <atom bType="B_1" nbType="NB_1" pairType="P_1">N9</atom>

2963 <atom bType="B_1" nbType="NB_1" pairType="P_1">C8</atom>

2964 <atom bType="B_1" nbType="NB_1" pairType="P_1">N7</atom>

2965 <atom bType="B_1" nbType="NB_1" pairType="P_1">C5</atom>

2966 <atom bType="B_1" nbType="NB_1" pairType="P_1">C6</atom>

2967 <atom bType="B_1" nbType="NB_1" pairType="P_1">N6</atom>

2968 <atom bType="B_1" nbType="NB_1" pairType="P_1">N1</atom>

2969 <atom bType="B_1" nbType="NB_1" pairType="P_1">C2</atom>

2970 <atom bType="B_1" nbType="NB_1" pairType="P_1">N3</atom>

2971 <atom bType="B_1" nbType="NB_1" pairType="P_1">C4</atom>

2972 <atom bType="B_1" nbType="NB_2" pairType="P_1">S10</atom>

2973 <atom bType="B_1" nbType="NB_1" pairType="P_1">C11</atom>

2974 <atom bType="B_1" nbType="NB_1" pairType="P_1">C12</atom>

2975 <atom bType="B_1" nbType="NB_1" pairType="P_1">C13</atom>

2976 <atom bType="B_1" nbType="NB_1" pairType="P_1">C14</atom>

2977 <atom bType="B_1" nbType="NB_1" pairType="P_1">C15</atom>

2978 <atom bType="B_1" nbType="NB_1" pairType="P_1">C16</atom>

2979 </atoms>

2980 <bonds>

2981 </bonds>

2982 <impropers>

2983 </impropers>

2984 </residue>

2985

2986 <!--RNA A-->

Listing 5.2: Adding the atoms section to the residue structure

In this example, as in the default models, all bonded interactions (bonds, angles and

dihedrals) are defined the same for all atoms. Therefore, only one atom group needs to be

defined. The bond type:bType=B 1 is identical for all atoms. The contact interactions
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pairType=P 1 are also defined to be the same for all atoms. However, changing the

mass of a specific atom, such as sulfur (S10) in our example will produce a different

non-bonded interaction due to a different volume exclusion term. The new group type

of nbType=NB 2 will be defined in the .nb file.

5.3.3 List all of the atom bonds

The chemical structure should tell you how atoms are connected to each other via

chemical bonds. Inspect those bonds and add them to the <bonds> section. The <bonds>

tag encapsulates all the bonds in the biomolecule.

2980 <bonds>

2981 <!--BACKBONE-->

2982 <bond energyGroup="bb_n">

2983 <atom>P</atom>

2984 <atom>O1P</atom>

2985 </bond>

2986 <bond energyGroup="bb_n">

2987 <atom>P</atom>

2988 <atom>O2P</atom>

2989 </bond>

2990 <bond energyGroup="bb_n">

2991 <atom>P</atom>

2992 <atom>O5*</atom>

2993 </bond>

2994 <bond energyGroup="bb_n">

2995 <atom>O5*</atom>

2996 <atom>C5*</atom>

2997 </bond>

2998 <bond energyGroup="bb_n">

2999 <atom>C5*</atom>

3000 <atom>C4*</atom>

3001 </bond>

3002 <bond energyGroup="bb_n">

3003 <atom>C4*</atom>

3004 <atom>O4*</atom>

3005 </bond>

3006 <bond energyGroup="bb_n">

3007 <atom>C4*</atom>

3008 <atom>C3*</atom>

3009 </bond>

3010 <bond energyGroup="bb_n">

3011 <atom>C3*</atom>

3012 <atom>O3*</atom>

3013 </bond>

3014 <bond energyGroup="bb_n">

3015 <atom>C3*</atom>

3016 <atom>C2*</atom>

3017 </bond>

3018 <bond energyGroup="bb_n">

3019 <atom>C2*</atom>
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3020 <atom>O2*</atom>

3021 </bond>

3022 <bond energyGroup="bb_n">

3023 <atom>C2*</atom>

3024 <atom>C1*</atom>

3025 </bond>

3026 <bond energyGroup="bb_n">

3027 <atom>C1*</atom>

3028 <atom>O4*</atom>

3029 </bond>

3030 <!--FUNCTIONAL GROUP-->

3031 <bond energyGroup="sc_n">

3032 <atom>C1*</atom>

3033 <atom>N9</atom>

3034 </bond>

3035 <bond energyGroup="pr_n">

3036 <atom>N9</atom>

3037 <atom>C8</atom>

3038 </bond>

3039 <bond energyGroup="pr_n">

3040 <atom>C8</atom>

3041 <atom>N7</atom>

3042 </bond>

3043 <bond energyGroup="pr_n">

3044 <atom>N7</atom>

3045 <atom>C5</atom>

3046 </bond>

3047 <bond energyGroup="pr_n">

3048 <atom>C5</atom>

3049 <atom>C6</atom>

3050 </bond>

3051 <bond energyGroup="pr_n">

3052 <atom>C6</atom>

3053 <atom>N6</atom>

3054 </bond>

3055 <bond energyGroup="pr_n">

3056 <atom>C6</atom>

3057 <atom>N1</atom>

3058 </bond>

3059 <bond energyGroup="pr_n">

3060 <atom>N1</atom>

3061 <atom>C2</atom>

3062 </bond>

3063 <bond energyGroup="pr_n">

3064 <atom>C2</atom>

3065 <atom>N3</atom>

3066 </bond>

3067 <bond energyGroup="pr_n">

3068 <atom>N3</atom>

3069 <atom>C4</atom>

3070 </bond>

3071 <bond energyGroup="pr_n">

3072 <atom>C4</atom>

3073 <atom>C5</atom>

3074 </bond>
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3075 <bond energyGroup="pr_n">

3076 <atom>N9</atom>

3077 <atom>C4</atom>

3078 </bond>

3079 <!--ADDITIONAL TO "A" FUNCTIONAL GROUP-->

3080 <bond energyGroup="pr_n">

3081 <atom>C2</atom>

3082 <atom>S10</atom>

3083 </bond>

3084 <bond energyGroup="pr_n">

3085 <atom>S10</atom>

3086 <atom>C11</atom>

3087 </bond>

3088 <bond energyGroup="pr_n">

3089 <atom>N6</atom>

3090 <atom>C12</atom>

3091 </bond>

3092 <bond energyGroup="pr_n">

3093 <atom>C12</atom>

3094 <atom>C13</atom>

3095 </bond>

3096 <bond energyGroup="pr_n">

3097 <atom>C13</atom>

3098 <atom>C14</atom>

3099 </bond>

3100 <bond energyGroup="pr_n">

3101 <atom>C14</atom>

3102 <atom>C15</atom>

3103 </bond>

3104 <bond energyGroup="pr_n">

3105 <atom>C14</atom>

3106 <atom>C16</atom>

3107 </bond>

3108 </bonds>

Listing 5.3: Adding the bonds section to the residue structure

Note that the bonds are separated by the comments: BACKBONE,FUNCTIONAL GROUP,

ADDITIONAL BONDS TO ’RNA A’ FUNCTIONAL GROUP. The bond tag attribute energyGroup

classifies the energy group the specific bond belongs to and helps to determine the di-

hedral strengths. The energy group bb n refers to bonds that belong to the backbone

group, and pr n refers to the functional group. It is sometimes useful to use an existing

residue as a reference if we know that the new residue is a slight modification of it. In our

example, MIA is a modified RNA A molecule. All backbone and functional group bonds

of RNA A can be added to MIA and we are left to determine the few other bonds created

by the additional atoms: S10, C11-C16. The additions are added under the comment

ADDITIONAL BONDS TO ’RNA A’ FUNCTIONAL GROUP with energy group of pr n.
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5.3.4 List the improper dihedrals

Improper dihedrals cannot be dynamically calculated by the program using the bonds,

and should be added separately. The tag <improper></improper> holds four atoms.

The order of the four atoms here defines a specific improper dihedral within a biomolecule.

How to find an improper dihedral:

An improper dihedral is used to ensure proper geometry about a chiral centers (i.e.

prevent symmetry inversion due to an absent hydrogen atom). A proper dihedral would

be defined by four sequential atoms connected by bonds (such as the dihedral C4*-

C5*-O5*-P). An improper dihedral is defined by atoms that are not sequential. Those

angles need to be identified using the chemical structure of the molecule. For example

we consider the four carbon atoms: C13,C14,C15,C16 and their bonds as defined above

(highlighted in orange).

Finally, we add all of the improper dihedrals to our residue. In our example there is

only one additional improper dihedral described above.

Add the improper dihedrals section to the residue structure:

3109 <impropers>
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3110 <improper>

3111 <atom>C3*</atom>

3112 <atom>C4*</atom>

3113 <atom>C5*</atom>

3114 <atom>O4*</atom>

3115 </improper>

3116 <improper>

3117 <atom>O3*</atom>

3118 <atom>C3*</atom>

3119 <atom>C4*</atom>

3120 <atom>C2*</atom>

3121 </improper>

3122 <improper>

3123 <atom>O2*</atom>

3124 <atom>C2*</atom>

3125 <atom>C1*</atom>

3126 <atom>C3*</atom>

3127 </improper>

3128 <improper>

3129 <atom>C2*</atom>

3130 <atom>C1*</atom>

3131 <atom>O4*</atom>

3132 <atom>N9</atom>

3133 </improper>

3134 <!--ADDITIONAL IMPROPER DIHEDRAL TO "RNA A" -->

3135 <improper>

3136 <atom>C13</atom>

3137 <atom>C14</atom>

3138 <atom>C15</atom>

3139 <atom>C16</atom>

3140 </improper>

3141 </impropers>

3142 </residue>

Listing 5.4: Adding the improper dihedrals section to the residue structure

5.4 Step 4 - Define a non-bonded group in the .nb file

Adding a new atom of a different mass requires a creation of a new non-bonded group for

the excluded volume interactions. In our example we chose the atom sulfur to have larger

mass of twice the carbon mass. A new <nonbond> tag is added and it encapsulates the

new non-bond group information such as mass charge and other explicit non-bonded

terms. The mass is doubled in the mass entry. The nbType includes the previously

defined group name NB 2 that is consistent with the .bif file. The modified file can be

found in: XMLcode examples/AA-whitford09 withMIA.nb.

Adding a new non-bonded group in the .nb fie:
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1 <?xml version=’1.0’?>

2 <nb>

3 <!-- DEFAULTS -->

4 <defaults gen-pairs="0"/>

5 <!-- GENERAL NONBONDS -->

6 <nonbond mass="2.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">

7 <nbType>NB_2</nbType>

8 </nonbond>

9 <nonbond mass="1.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">

10 <nbType>NB_1</nbType>

11 </nonbond>

12 <!-- CONTACTS -->

13 <contact func="contact_1(6,12,?,?)" contactGroup="c">

14 <pairType>*</pairType>

15 <pairType>*</pairType>

16 </contact>

17 </nb>

Listing 5.5: Defining a new non-bonded group in the .nb file
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Additional supported options

As described above, it is the aim of SMOG2 that the user will be able to extend the

models in a wide range of ways. Accordingly, it is not possible that we provide descrip-

tions of every possible variation that one may explore. However, here, we make an effort

to provide some examples of how to implement specific features that we think may be

frequently of interest.

6.1 Adding specific bonds

There are often cases where the covalent geometry of the system can not be determined

by a general set of rules. For example, disulfide bonds may be formed, or broken, depend-

ing on the oxidation state. As another example, sugar structures often have branching

patterns, and therefore do not form linear chains. For these types of chemical bonds,

we provide the BOND option in the PDB file. If you would like to add a chemical bond,

then add BOND lines immediately after the END line in the PDB file. The formatting is

the following:

BOND ChainIndex1 AtomIndex1 ChainIndex2 AtomIndex2 energygroup

ChainIndex1 and AtomIndex1 indicate the first atom involved in the bond. ChainIndex1

is the index of the chain in which the atom exists, starting at 1. AtomIndex1 is the

number of the atom, as it appears in the PDB file. Note, ChainIndex1 is not necessarily

the chain ID. ChainIndex2 and AtomIndex2 indicate the second atom involved in the

bond. energygroup indicates the properties of any dihedral angles that have the new

bond as a middle bond (See Chapter 4 for discussion on energy groups). For example,

the following line:

BOND 1 51 4 100 r p

36
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would add a chemical bond between the atom numbered 51 in the first chain, and the

atom numbered 100 in the 4th chain. The bond properties would be determined based

on the .b file settings, and the energy group of any associated dihedrals would be r p.

When SMOG2 runs, it will write information to the screen as the BOND lines are detected.

It will also write out information about what it interpreted the lines to mean, so you

can verify that the intended bonds are being added.

6.2 Adding electrostatics and non-standard contact poten-

tials.

While not part of the standard structure-based model, there are often times where it

is desirable to add some degree of electrostatic interactions, or one would like to use

interactions that are not of the 6-12 form.

If you would like to add charge to your system, then you will need to define atom types

with varying charges, which is accomplished by modifying the .nb file (See Chapter 4).

By default, Gromacs will treat these interactions as purely Coulombic. If you would

like to use a screened electrostatic interaction (i.e. Debye-Huckle), then you need to

supply a table. We supply a tool that will generate a screened-electrostatic look-up

table, as implemented by Givaty and Levy[10]. To generate this table, you can use the

tool smog tablegen. This is the same tool used for non-standard N-M potentials (e.g.

the 10-12 potential used for Cα models. See Chapter 3). Usage:

$SMOG PATH/bin/smog tablegen <M> <N> <ion conc.> <elec. switch dist.> \
<elec. truncate dist.> <table length> <output name>

<ion conc.> is the monovalent ion concentration, which sets κ. In order to avoid

numerical issues by imposing a cutoff distance, <elec. switch dist.> and <elec.

truncate dist.> should be used. These will modify the potential, starting at a dis-

tance <elec. switch dist.>, using a 4th-order polynomial, which will ensure that the

potential smoothly switches to zero at <elec. truncate dist.>. Caution: When us-

ing electrostatics, you will need to adjust your .mdp so that cutoffs are properly imposed

during the simulation. The above flags only ensure that the table is correct.
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Energetic Description of the

Distributed Models

A.1 The All-atom model

All non-hydrogen atoms are explicitly represented, and the provided structure (file.pdb)

is defined as the global potential energy minimum. Here, we provide a complete de-

scription of the default all-atom structure-based model energy function, which is defined

by the template SBM AA). All calculations employ reduced units. Each atom is rep-

resented as a single bead of unit mass, and the charge of each atom is set to zero.

Covalent geometry is maintained through harmonic interactions that ensure the bond

lengths, bond angles, improper dihedral angles and planar dihedral angles remain about

the values found in file.pdb. Non-bonded atom pairs that are in contact in the provided

structure between residues i and j, where i > j + 3 for proteins and i 6= j for RNA,

are given an attractive 6-12 potential. The minimum of each 6-12 interaction is set to

the distance of that atom pair in the provided structure. All non-native interactions

between atoms that are not in contact in file.pdb are repulsive. Contacts were defined

according to the Shadow algorithm (See Appendix B, with an all-atom cutoff distance

of 6 Å and a shadowing radius of 1 Å. The functional form of the potential is,

V =
∑
bonds

εr(ri − ri,o)2 +
∑
angles

εθ(θi − θi,o)2+∑
impropers εχimp(χi − χi,o)2 +

∑
planar εχplanar

(χi − χi,o)2

+
∑

backbone

εBBFD(φi) +
∑

sidechains

εSCFD(φi)

+
∑

contacts

εC [
(σij
r

)12
− 2

(σij
r

)6
] +

∑
non−contacts

εNC

(
σNC
rij

)12

(A.1)
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where,

FD(φ) = [1− cos(φi − φi,o)] +
1

2
[1− cos(3(φi − φi,o))] (A.2)

When using SMOG v2, all values may be adjusted by the user, such as defining stabilizing

non-native interactions and including non-specific dihedral angles. However, for the

default model ri,o, θi,o, χi,o, φi,o and σij are given the values defined by the provided

structure. For the default model, the parameters are set to the following values:

εr = 50ε0, εθ = 40ε0, εχimp = 10ε0, εχplanar
= 40ε0, εNC = 0.1ε0, σNC = 2.5Å, ε0 = 1.

Note that, relative to the original implementation of this model, εr is decreased by

a factor of two, and εθ is increased. As discussed in the SMOG v2 publication (in

preparation), this allows for a longer timestep of 0.002 to be utilized, which is larger

than the originally-implemented 0.0005. When assigning dihedral interaction weights

(εBB and εSC), dihedrals are first grouped if they have a common middle bond. For

example, in a protein backbone, there are up to four dihedral angles that may be defined

that have the C−Cα bond as the middle bond. Each dihedral group is given a summed

weight of εBB, or εSC . The ratio RBB/SC = εBB
εSC

is set to 1 for nucleic acid dihedral

angles and and 2 for protein dihedral angles. εBB for protein and nucleic acids are equal.

Dihedral strengths and contact strengths are scaled such that:

RC/D =
∑
εC∑

εBB+
∑
εSC

= 2∑
εC +

∑
εBB +

∑
εSC = Nε0

The sums are over all dihedral angles in the system, and N is the number of atoms in

the system.

We are going to add a description here for where to look in the template files for each of

these parameters. As we continue to work on the manual, these details will be provided.

A.2 The Cα model

The Cα model coarse-grains the protein as single bead of unit mass per residue located

at the position of the α-carbon. ~x0 denotes the coordinates of the native state and any

subscript 0 signifies a value taken from the native state. The potential is given by



Appendix A. Energetic formulation 40

VCα(~x, ~x0) =
∑
bonds

εr(r − r0)2 +
∑
angles

εθ(θ − θ0)2 +
∑

dihedrals

εDFD(φ− φ0)

+
∑

contacts

εC

[
5
(σij
r

)12
− 6

(σij
r

)10]
+

∑
non−contacts

εNC

(
σNC

rij

)12

(A.3)

where the dihedral potential FD is,

FD(φ) = [1− cos(φ)] +
1

2
[1− cos(3φ)]. (A.4)

The coordinates ~x describe a configuration of the α-carbons, with the bond lengths to

nearest neighbors r, three body angles θ, four body dihedrals φ, and distance between

atoms i and j given by rij . Protein contacts that are separated by less than 3 residues

are neglected. Excluded volume is maintained by a hard wall interaction giving the

residues an apparent radius of σNC = 4 Å. The native bias is provided by using the

parameters from the native state ~x0. Setting the energy scale ε ≡ kB, the coefficients

are given the homogeneous values: εr = 100ε, εθ = 20ε, εD = εC = εNC = ε.

A.3 Gaussian contact potential (+gaussian templates)

The Gaussian-shaped contact potentials (A.1) are available in the SMOG version of

Gromacs and NAMD (see section A.3.3). These potentials are used when one desires

control over either the shape of the excluded volume or the width of the attractive

potential. They are also useful if contacts require minima in two places. In depth

characterization of the Gaussian potentials with all-atom structure-based models using

SMOG can be found in [11] (templates/SBM AA+gaussian). They are explored in the

context of a multi-basin Cα model here [12] (templates/SBM calpha+gaussian).

A.3.1 templates/SBM AA+gaussian

Changes the contact potential to ftype = 6, εC=?, r0=?, σ=
√

(µ2/(50 ln 2)),rNC=same

as normal excluded volume (ad defined by c12, such that i.e., σNC ∗ ε1/12NC ). The rather

complex definition of the width of the Gaussian well σ is designed to model the vari-

able width of the LJ potential. CAA(1.2rij0 , r
ij
0 ) ∼ −1/2 so σ is defined such that

G(1.2rij0 , r
ij
0 ) = −1/2 giving σ2 = (rij0 )2/(50 ln 2).
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A.3.2 templates/SBM calpha+gaussian

Changes the contact potential to ftype = 6, εC=?, r0=?, σ=0.05 nm, rNC=(0.4)12.

Figure A.1: Comparison of Lennard-Jones and Gaussian contact potentials. Black
curves show LJ contact potentials with minima at 6 Å and 10 Å. The Gaussian contact
potential shown in green has an excluded volume σNC that can be set independently of
the location of the minimum. The dotted green line shows how the Gaussian contact

would change as another minimum at 10 Å is added. Taken from [1].

A.3.3 Downloading the source code extensions

A.3.3.1 Gromacs

The Gaussian contact shapes are not available in the standard Gromacs distributions.

The necessary source code can be obtained at http://smog-server.org/extension.html.

This source distribution is compiled exactly as any other Gromacs source distribution.

A.3.3.2 NAMD

Currently the “nightly build” version of NAMD contains the Gaussian potentials in the

“Go potentials” section. More information can be found in the NAMD manual.

A.3.4 Including Gaussian potentials in the topology files

A.3.4.1 Gromacs

The Gaussian interaction is designated in the [ pairs ] section of the topology file.

• ftype = 6

http://smog-server.org/extension.html
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– Cij = −A
((

1 + 1
A

a
r12

)(
1− exp

[
− (rij−µij)2

2σ2
ij

])
− 1

)
– εC → depth of the attractive well

– r0 → position of the minimum of the attractive well

– σ → width of the attractive well

– rNC → position of the excluded volume hard wall

– This form includes an excluded volume part, and therefore the pair ij should

be included in [ exclusions ]. The multiplicative form anchors the mini-

mum of the well at (r0,−εC).

Note that ftype = 5 and ftype = 7 exist in the SBM extensions version, though there

is no implementation in SMOG2 at the moment. They can be added by hand if desired.

A.3.4.2 NAMD

Currently the “nightly build” version of NAMD contains the Gaussian potentials in the

“Go potentials” section. More information can be found in the NAMD manual.
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Understanding the provided

SCM.jar tool

B.1 Introduction

This section describes a Java application SCM.jar that computes the “Shadow” map,

a general contact definition for capturing the dynamics of biomolecular folding and

function. It is described in the literature here [11]. A contact map is a binary symmetric

matrix that encodes which atom pairs are given attractive interactions in the SBM

potential. In the context of a SBM, the native contact map should approximate the

distribution of stabilizing enthalpy in the native state that is provided by short range

interactions like van der Waals forces, hydrogen bonding, and salt bridges. Any long

range interactions or nonlocal effects are taken into account in a mean field way through

the native bias.

B.1.1 Role of SCM.jar in SMOG v2

Internally SMOG v2 uses SCM.jar to compute contact maps. From the user’s point

of view the contact map can be of two types, all-atom or coarse-grained. An all-atom

map returns the atoms that are in contact based on the Shadow definition. A coarse-

grained map (e.g. to be used with the Calpha model) is created from an all-atom map.

The coarse-grained map consists of residue-level contacts. A residue-level contact exists

if there is at least one atom-atom contact between two residues. This is why a PDB

containing all heavy atoms is required by the tool. When coarse-graining SMOG2 asks

that the user provide an all-atom template in addition to the coarse-graining template

that tells SMOG2 how to interpret the all-atom PDB in order to interface with SCM.jar.

43
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Figure B.1: The Shadow contact map screening geometry. Only atoms within the
cutoff distance C are considered. Atoms 1 and 2 are in contact because they are within
C and have no intervening atom. To check if atoms 1 and 3 are in contact, one checks
if atom 2 shadows atom 1 from atom 3. The three atoms are viewed in the plane, and
all atoms are given the same shadowing radius S. Since a light shining from the center

of atom 1 causes a shadow to be cast on atom 3, atoms 1 and 3 are not in contact.

The tool is available with the SMOG2 source for users that want to create their own

customized maps. The rest of the chapter describes the basics of using the tool.

B.1.1.1 Some details of coarse-graining

The coarse-grained contact map returned is only strictly recommended for use with

Calpha models of proteins, and where the input PDB has an all-atom representation.

For various modeling applications, it is desirable that the program not die with an error if

the PDB doesn’t only contain all-atom protein with each residue containing a CA atom.

Therefore, the behavior is that the program will choose one atom from each residue to

stand in as the representative coarse-grained position. It chooses, in order of preference:

CA, N1, first atom in the residue. This really only matters for the --distance option.

B.1.2 Locating SCM.jar

The jar should be located in $SMOG PATH/tools.

B.1.3 Citing SCM.jar

The citation for SCM.jar is [11].
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B.1.4 Running SCM.jar

Like any java application, no compilation is necessary, but a virtual machine is required;

SCM.jar requires a sufficiently recent JRE. SCM.jar reads SMOG formatted Gromacs

input files. Important! The all (heavy) atom geometry must be used, even if

the output will be a coarse-grained residue-based map for a Cα model. The atomic co-

ordinates are read in .gro format and the bond connectivity is read via a .top obtained

from the SMOG webtool (or source distribution). The topology is required since bonded

atoms shadow each other differently and since contacts are automatically discarded be-

tween two atoms if they share a bonded interaction. At the command line, the basic

syntax is

user$ java [-Xmx1000m] -jar SCM.jar -g grofile -t topfile -o outputName

[--chain chainFile] [--default | -m {shadow,cutoff}]

-Xmx1000m assigns 1000 MB of RAM to the Java virtual machine heap. With large

complexes (>1e5 atoms) the default heap allocation can run out which gives the following

error:

java.lang.OutOfMemoryError: Java heap space

The output all-atom contact file format is

chain_i atom_i chain_j atom_j [distance]

and similarly, the output residue contact file format is

chain_i residue_i chain_j residue_j [distance]

B.1.4.1 Some examples

• Shadow map, atomic contacts, shadowing radius 1 Å and cutoff 6 Å (default sizes).

See Figure B.1 for definition of radius and cutoff. Add --chain if you have multiple

chains, since the .gro format does not allow for chain information. Specify the

chains file you get from your SMOG output.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--default [--chain chainsFile]
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• Shadow map, atomic contacts, shadowing radius 2 Å and cutoff 4 Å.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-m shadow -c 4 -s 2 [--chain chainsFile]

• Cutoff map, atomic contacts, and cutoff 4 Å.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-m cutoff -c 4 [--chain chainsFile]

- OR -

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-s shadow -s 0 -c 4 [--chain chainsFile]

• Shadow map, residue contacts, default, include contact distances

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--distances --coarse CA [--chain chainsFile]

• To calculate over a trajectory instead of a single structure, use --multiple X,

where X is the number of frames in the trajectory .gro file. Assumes that the

format of proteinTraj.gro is the same as the output of trjconv. This saves

time relative to looping over many grofiles because the topology (and therefore

the bonded list) is only created once.

user$ $GROMACS/trjconv -f traj.xtc -o proteinTraj.gro

user$ java -jar SCM.jar -g proteinTraj.gro -t protein.top -o contactMapsOut

--default --multiple 1000 [--chain chainsFile]

B.1.4.2 Full configuration parameter list

The following will give a full list of configuration options:

user$ java -jar SCM.jar -help

B.1.4.3 Running SCM.jar through the webtool

On the webserver (http://smog-server.org/Shadow.html) one can build a shadow map

from a SMOG formatted PDB file.
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