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Should you read this manual?

If you would only like to use the basic functionality of SMOG 2 (i.e. the standard sup-
ported models), then you may find that the README file associated with the distribution
provides all the information you need. This manual provides a more detailed description
of the basic usage guidelines, in addition to advanced usage information and detailed
descriptions of the underlying methodologies/models. For basic users, if the README is
not sufficient, then Chapters 1, 2, 3 and 4 will help you get started. For more advanced
users, who may wish to modify structure-based models (e.g. extending to new residue
types, ligands, electrostatics, etc), then consulting Chapters 5, 6, 7 and 8 will be nec-
essary. We additionally provide appendices that have technical details that may be of
interest to some users. While we try to provide all pertinent information here, don’t

hesitate to contact us for clarification.

SMOG 2, and all associated files, are distributed free of charge, made available under
the GNU General Public License.
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Chapter 1

Introduction

1.1 What are Structure-Based Models?

Structure-based models (i.e. SBMs, or SMOG models) define a particular known con-
formation as a potential energy minimum. With this being the only requirement, there
is an endless number of ways in which one may construct a structure-based model. For
example, one may build protein-specific and RNA-specific variants, the resolution of
the model can be varied, multiple minima may be included, and the degree to which
non-native interactions are stabilizing can be adjusted. The utility of these models is
equally broad, where they may be applied for understanding dynamics, or for struc-
tural modeling objectives, as discussed elsewhere [1]. With such flexibility, this general
class of models can be tailored to ask specific questions about biomolecular processes.
In the present document, we describe a set of computational tools that allows one to
use previously-developed structure-based models, as well as design and implement new

variations that are suited for your specific needs.

In the simplest form, a structure-based model defines a single configuration as the global
potential energy minimum, where all intra- and inter-molecular interactions are assigned
minima that correspond to that structure. This fully native-centric variant of the model
is colloquially referred to as a “vanilla” structure-based model. In terms of the energy
landscapes of biomolecules, these vanilla models represent an energetically unfrustrated
landscape [2, 3]. Since biomolecular landscapes possess some degree of energetic rough-
ness, it is often desirable to extend structure-based models to include both native and
non-native interactions. As such, in the SMOG 2 software package, we provide two
energetically unfrustrated models by default, upon which additional interactions may
be added by the user. Specifically, this distribution provides the coarse-grained C,,

structure-based model for proteins, as developed by Clementi et al. [4] and the all-atom

1
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structure-based model, as developed by Whitford et al. [5]. While the C,, model is only
defined for proteins, the all-atom model supports proteins, RNA, DNA and some lig-
ands. Since there have been a number of extensions in the all-atom model over the last

several years, a complete description of the energetic parameters is given in Appendix A.

1.2 What does SMOG 2 do?

SMOG 2 is a software package designed to allow the user to start with a structure
of a biomolecule (i.e. a PDB file) and construct a structure-based model, which is
then simulated using Gromacs [6], NAMD [7], openMM, or LAMMPS. We previously
implemented an online server (SMOG 1) that was capable of providing the vanilla flavor
of structure-based models, along with a few adjustable parameters. SMOG 2 is a nearly
complete rewrite of the original software package, and it provides four major advantages

over its predecessor:

e Extensibility — One may add new residue and molecule types without source-code

modifications.

e Portability — By building force field definitions on generally-defined XML-formatted
files, researchers may easily distribute and share new SMOG model variants. We
encourage users to make their models publicly available through the SMOG 2 Force
Field Repository.

e Generalizability — Every energetic parameter may be varied, and additional ener-

getic interactions (even non-native) may be included.

e Multi-resolution capabilities — Any level of structural resolution may be imple-

mented, as well as multi-resolution variations.

It is important to note that, in order to adjust a SMOG model, one simply adjusts the
XML template files. In addition, the templates are not statically-linked to SMOG 2,

which allows any user to easily choose from a library of models at runtime.


http://openmm.org
http://smog-server.org
https://smog-server.org/smog2/template_repo/
https://smog-server.org/smog2/template_repo/

Chapter 2

“Installation”

The SMOG 2 software is available as a direct source-code download, or as a preconfigured
container. If one choses to download the code, or use the beta/git version, it is necessary
to configure a few settings and ensure that appropriate modules are available at runtime.
Below are instructions on how to configure SMOG 2 properly on your local machine

(source-code download), as well as information on the preconfigured Docker container.

2.1 Prerequisites

SMOG 2 runs on all Unix-like operating systems. The prerequisites for SMOG 2 are

Perl Programming Language

Perl Data Language (PDL),

as well as the following modules, which are available through the Perl module managing

utility CPAN (recommended), or through manual installation:

String::Util
XML: :Simple
Exporter

XML: :Validator: :Schema

Finally, your machine must have Java Runtime Environment v1.7 or greater.


http://www.perl.org/
http://pdl.perl.org/?page=install
http://www.cpan.org/modules/INSTALL.html

Chapter 2. Installation 4

2.2 Configuration

Before running SMOG 2, you must configure it on your local machine. This is accom-

plished through a short two-step process:

1) Set the required environment variables. To do so, modify the file configure.smog?2,

which is included with the distribution. Specifically, you will need to modify the follow-

ing two lines:

smog2dir=""

perl4smog=""

smog2dir is the main SMOG directory, and perl4smog is the version of perl that you

would like to use. On most linux systems, the default location of Perl is "/usr/bin/perl",

whereas on OSX it is typically "/opt/local/bin/perl".

2) Initialize the new environment variables with:
> source configure.smog?2

This will set the required environment variables for your current session.
To automatically configure SMOG at login, you may want to add the above command
to your shell profile file (e.g. ~/.bashrc):

source /full-smog2-path/configure.smog2

As a note, we have found that some Linux distributions require that you replace source

with bash. Among other things, this will add the smog bin to your PATH.

2.3 Verify SMOG is properly configured

Test if SMOG is properly configured by running the test-config script:
> ./test-config

This script will check if the environment variables are set up and will run a few bench-
mark tests to make sure SMOG is working. Additionally, if SMOG is properly config-

ured, then you will be able to run smog with the following command:

> smog?2
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If configuration was successful, then you will be greeted with a message that looks sim-

ilar to:

SHOG w2,0
Thank you for using the Structure-based Model (SMOG) software

Thiz package is the product of contributionz from a number of people, including:
Jeffrey Hoel, Mariana Levi, Mohit Raghunathan,
Fyan Hayes, Jose Onuchic & Paul Whitford

Copyright (o) 2015, The SHOG development team at
Rice University and Hortheastern University

SHOG w2,0 & Shadow are available at httpi/dsmog—server,org

Direct questions to: infolsmog-server,orq

In addition to verifying that SMOG 2 will start, it is highly recommended that you also
run the full set of test script provided as a tarball (smog-check), which is available at

SImMOog-server.org.

smog-check contains three test scripts, which test smog2, smog tools and the Shadow
Contact Map program. When everything works well, performing the checks is as easy as
issuing three commands. Just make sure you source configure.smog2 before running

the tests.

While in the main smog-check directory, issue the command:
./smog-check

For the tools check :

./smog-tool-check

For the Shadow Contact Map check :

./scm-check

If you find that any of these scripts report failures, please communicate that to the

smog-server.org team, so that we may help diagnose the problem.

If you are modifying the SMOG package, or you are making modifications to the default
force fields, it may be desirable to only employ specific checks. In this case, you can run
a single test with the command ./smog-check N, where N is the index of the check.

You can also run a range of tests with ./smog-check N M.



Chapter 2. Installation 6

2.4 Docker container

As described at the Docker website: A container is a standard unit of software that
packages up code and all its dependencies so the application runs quickly and reliably
from one computing environment to another. We provide a containerized SMOG 2. If

docker is running on your computer, the following command will pull the container:
> docker pull jknoel/smog2.3

The container can then be launched:

> docker run -it --rm jknoel/smog2.3

You are initially placed into the home directory of user smoguser inside the container at
a bash prompt. Note that the container is essentially a stripped down Ubuntu linux. vi
and nano text editors are available. All smog2 executables are available in the $PATH.

smog?2 is located in /opt/smog2 and smog-check in /opt/smog-check.

IMPORTANT: You will want to connect the container to the files on your computer,
e.g. to load PDB files and to write output files. This is done with the -v switch, which
connects (mounts) a directory on your filesystem to a directory inside the container.

This can be done however you like, but we recommend the following;:
> docker run -it --rm -v $HOME:/home/smoguser jknoel/smog2.3

$HOME refers to your home directory and on *nix flavors is typically already a shell
variable. /home/smoguser is the home directory of the default user in the container.
When inside the container, it should thus effectively start you in your home direc-
tory with a bash prompt. Note that in this case, even though the directory is named
/home/smoguser, it is in fact your home directory, so editing and deleting files is actually

changing the files in your home directory!
Alternatively, one could use:
> docker run -it --rm -v $(pwd):/workdir jknoel/smog2.3

In this case, the directory that the docker is called from ($pwd, i.e. present working
directory) is mounted as /workdir in the container. Make sure all the files you need are
available in $pwd and its subdirectories, as these files will be available to the container in
/workdir and its subdirectories. The container is unable to interact with any directories

above $pwd.


https://www.docker.com/resources/what-container

Chapter 3

Using SMOG 2

This chapter describes the usage of SMOG 2. It is recommended that all users read this

chapter before using the software.

3.1 Preparing the input PDB file

3.1.1 PDB file format

To prepare a SMOG force field, a structural model (e.g. crystallographic, NMR, or
cryo-EM model) must be provided as a PDB file, in accordance with the PDB Content
Guide, page 187.

To avoid I/0 issues, please follow these additional guidelines when preparing your PDB
file for use with SMOG 2:

e Only use a text editor (e.g. vi, or emacs) to prevent insertion of hidden characters.

e Only include lines that start with ATOM, HETATM, COMMENT (may be at the
beginning, or end of any chain), BOND (user-defined system-specific bonds. Must
appear after END. See Section 8.1), TER (to indicate a break between 2 chains)
and END. Only BOND and COMMENT lines may appear after END.

e Chain identifiers are ignored. If your system has multiple chains, insert TER lines
(left justified) between chains. NOTE: Do not immediately follow a TER line with
an END line. This is interpreted as a chain with 0 atoms, and an error message

will be issued.


ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_Letter.pdf
ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_Letter.pdf
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e Only residues and atoms within a residue defined in the force field templates will
be recognized by SMOG 2. Unless a coarse-grained template is designated with
-tCG, unrecognized residues and atoms will lead to a PDB parse error, and the

program will exit.

e Residue name field is officially columns 18-20 in the PDB definition, but smog2

reads columns 18-21 since column 21 is unused.

3.1.2 Preprocessing

As discussed in Chapter 6, SMOG 2 reads “template” files in order to generate force field
files. As such, each PDB file has to fully conform to the molecular structure definitions
provided by the templates. For example, the default all-atom templates (provided in
SBM_AA) distinguish between terminal and non-terminal residues (i.e. in proteins there
is an OXT in place of a peptide bond for terminal residues). In the default templates,
the C-terminal amino acid residues have the suffix “T” added to their their three-letter
code (e.g. GLY vs. GLYT).

A preprocessing tool (smog_adjustPDB) is provided that will adjust your PDB to reflect

changes necessary to conform to the templates. For usage guidelines, see Section 5.1.

3.2 Generating a Structure-Based Model

SMOG 2 supports a broad range of structure-based models. The all-atom [5] and C, [4]
models are provided as defaults. See Appendix A for full details of the default models.
By running SMOG, you will generate the .top, .gro, and .ndx files necessary to perform
a structure-based simulation in Gromacs, NAMD, or openMM. The files may also be
converted to a format for use with LAMMPS. Additional output files are provided, for

your information.

3.2.1 Default All-Atom Model

The all-atom potential energy function is defined through the template files found in
$SMOG_PATH/SBM_AA. These files define:

1) the covalent geometry of amino acids, nucleic acids, some ligands, as well as bioinor-
ganic atoms

2) the energetic and system parameters (e.g. mass, charge, interaction strengths)


http://gromacs.org
http://www.ks.uiuc.edu/Research/namd/
http://openmm.org
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To generate all-atom force field and coordinate files for the default model (i.e. .top and

.gro files), issue the command:

> smog2 -i yourFile.pdb -AA

where yourFile.pdb is the name of the file containing your molecular system.

If you would like to specify a different all-atom model, then use the command:

> smog2 -i yourFile.pdb -t templateDirName

where templateDirName is the name of the directory containing the desired template
files.

3.2.2 Default C, model

To generate force field and coordinate files for the default C, model, issue the command:

> smog2 -i yourFile.pdb -CA

If you would like to use a different set of CG templates:

> smog2 -i yourFile.pdb -t templateDirName -tCG CGtemplateDirName

Note that an additional set of templates are required when using a coarse-grained model.
The option -tCG is used to indicate the precise coarse-grained model that should be pre-
pared. When -tCG is given, the -t flag is used to designate the templates that initially
process the PDB for contact analysis. Normally an all-atom PDB is provided, since na-
tive contact maps make the most sense when generated from an all-atom structure (note
that the “Shadow” map only makes sense with atomic graining). The -tCG templates
are then used to construct the CG energetic model. In the above example, the PDB has
residues and atoms defined in the -t templates, and these definition will also be used
for contact map generation. See Chapter 5.7 for a detailed description of the supported

contact map calculations.
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3.2.3 Default Gaussian contact potential models

The default Gaussian models have energetic and structural parameters that are tailored
to be similar to the LJ contact potential models, while allowing for a more flexible Gaus-
sian contact shape. To generate force field and coordinate files for the default Gaussian

all-atom model, issue the command:
> smog2 -i yourFile.pdb -AAgaussian
or for the default Gaussian C, model,

> smog2 -i yourFile.pdb -CAgaussian.

3.3 Input options

SMOG 2 always requires a PDB file and some argument indicating which model should

be used. Table 3.1 shows the currently-supported input arguments.

3.3.1 User-provided contact map

If you have generated contacts yourself, these can be used instead of using the internal
SMOG 2 routines. A single file containing all the contacts in a list can be specified at

the command line with the flag -c. For example:
> smog2 -i <pdbfile> -c contacts.txt ...
will read the list of contacts in file contacts.txt

chainNum il atomNum il chainNum j1 atomNum j1 (opt. distance)
chainNum i2 atomNum_i2 chainNum_j2 atomNum_j2 (opt. distance)
chainNum i3 atomNum i3 chainNum j3 atomNum_j3 (opt. distance)

etc ...

which should be formatted as a single line per contact, whitespace delimited, where
each line has the two atoms that are interacting and their respective chain numbers.
The chains are numbered starting from 1 by the order of occurence in the PDB file.
The atomNum should be consistent with atom numbers in the input PDB file. The fifth

column can contain a numeric distance in A, which, if provided, will be used instead of
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the native distance. If using —tCG to obtain a coarse grained topology, the input contact
map should designate residue numbers instead of atom numbers, again with the same

numbering as in the input PDB file.



Chapter 3. Usage

12

Input Option ‘ Usage ‘ Default value
Required
-i <string> ‘ input PDB file to define the model ‘ molecule.pdb
Optional
-t <string> folder containing templates of | none
molecular and interaction defini-
tions
-AA use the default all-atom model N/A
-CA use the default C, model N/A
-AAgaussian use default all-atom model with | N/A
gaussian contacts
-CAgaussian use default C, model with gaussian | N/A
contacts
-tCG <Folder Name> folder containing templates used for | none
coarse graining.
-c <string> input contact file name none
-g <string> output .gro file name SMOgE.Lro
-0 <string> output .top file name smog.top
-s <string> output .contacts file name smog.contacts
-n <string> output .ndx file name smog.ndx
-dname <string> default name to use for all output | smog
files
-backup [yes|no] enable/disable generation of backed | yes
up outputs
-warn [N] convert the first N fatal errors to | 0
warnings. Convert all errors if N=-1
(Should be used with extreme cau-
tion)
-limitbondlength if bond length exceeds limit (in nm), | N/A
set it to the limiting value
-limitcontactlength | if contact length exceeds limit (in | N/A
nm), set it to the limiting value
-deleteshortcontact | if a contact length is too short, don’t | N/A
include it in the model
-ignH ignore any atoms with name start- | N/A
ing with "H’ in the internal contact
algorithm
-rescaleCD <float> override total energy normalization | 1.0
and rescale all contacts/dihedrals by
a factor
-nocheck turn off template cross-validation | N/A
checks
-gen_map read the .bif file, generate a mapping | N/A
file for smog_adjustPDB and exit
~help show supported options

TABLE 3.1: Flags supported by SMOG v.2.3
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Performing a simulation, or

calculation

Once you have generated the .top and .gro files with SMOG, you are ready to perform
a simulation. Rather than write a new molecular dynamics simulation package, SMOG
generates input files for use with Gromacs [6], NAMD ([7], openMM and LAMMPS,
highly-optimized and parallelized MD software suites. This allows you to use nearly
every protocol that has been implemented in these programs when performing simu-
lations with structure-based models (e.g. replica exchange, umbrella sampling). In
addition, these packages are scalable to many processors through a combination of MPI
and thread-based parallelization, and they also support GPU acceleration, which allows
SMOG models to fully take advantage of cutting-edge computing resources. Here, we
provide brief descriptions of how to perform SMOG model simulations in Gromacs, while
external references to NAMD, openMM and LAMMPS are noted.

4.1 Using Gromacs 4.5 or 4.6

4.1.1 All-Atom Model

First, produce a portable xdr file (in the example below, run.tpr) that describes your
simulation. This file is platform-independent and contains all parameters for your sim-
ulations. This allows you to produce a tpr file on any machine, and then move it to
another machine and run your simulation. The xdr file is produced by grompp (part of

the Gromacs distribution):

13
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> grompp -f mdpfile.mdp -c gro_file.gro -p top_file.top -o run.tpr

The file mdpfile.mdp tells Gromacs what settings to use during the simulation, such
as the timestep size, the number of timesteps and what thermostat to use. Here is a

sample set of recommended configurations when using the default all-atom model:

integrator = sd ;Run control: Use Langevin Dynamics protocols.

dt = 0.002 ;time step in reduced units.

nsteps = 100000 ;number of integration steps

nstxout = 100000 ;frequency to write coordinates to output trajectory .trr file.
nstvout = 100000 ;frequency to write velocities to output trajectory .trr file
nstlog = 1000 ;frequency to write energies to log file

nstenergy = 1000 ;frequency to write energies to energy file

nstxtcout = 1000 ;frequency to write coordinates to .xtc trajectory

xtc_grps = system ;group(s) to write to .xtc trajectory (assuming no ndx file is supplied to grompp).
energygrps = system ;group(s) to write to energy file

nstlist = 20 ;Frequency to update the neighbor list

coulombtype = Cut-off

ns_type = grid ; use grid-based neighbor searching

rlist = 1.2 j;cut-off distance for the short-range neighbor list

rcoulomb = 1.2 ; cut-off distance for coulomb interactions

rvdw = 1.2 ; cut-off distance for Vdw interactions

pbc = no ; Periodic boundary conditions in all the directions

table-extension = 10 ; (nm) Should equals half of the box’s longest diagonal.

tc-grps = system ;Temperature coupling

tau_t = 1.0 ; Temperature coupling time constant. Smaller values = stronger coupling.
ref_t = 80.0 ; "1 reduced temperature unit (see Gromacs manual or SMOG 2 manual for details)
Pcoupl = no ;Pressure coupling

gen_vel = yes ;Velocity generation

gen_temp = 80.0

gen_seed = -1

ld_seed = -1

comm_mode = angular ; center of mass velocity removal.

LisTING 4.1: Sample mdp file for all-atom SMOG models used for Gromacs v4.5/4.6

Note: If you would like to perform energy minimization, simply change the integrator

settings to steep (steepest descent) or cg (conjugate gradient).

After you have generated the .tpr file with grompp, you will need to perform the simu-

lation. To run the simulation, issue the command:
> mdrun -s run.tpr -noddcheck

Is is highly recommended that you explore all Gromacs options, in order to ensure max-
imum performance (e.g. the number of threads being used). SMOG-model specific
requirement: To use domain decomposition when performing a simulation in parallel,

using either threads, or MPI, you should add the additional flag -noddcheck. Note: For
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folding of small proteins you will probably want to avoid domain decomposition, and

instead use particle decomposition by adding the option -pd when on a single node.

4.1.2 C, Model

To run a simulation with the C, model, the steps are the same as for the AA model,
though there are a few minor differences. First, when running grompp, you will want to

change a few settings in the .mdp file. A sample .mdp file for C,, models is given below.

integrator = sd ;Run control: Use Langevin Dynamics protocols.

dt = 0.0005 ;time step in reduced units.

nsteps = 100000 ;number of integration steps

nstxout = 100000 ;frequency to write coordinates to output trajectory .trr file.
nstvout = 100000 ;frequency to write velocities to output trajectory .trr file
nstlog = 1000 ;frequency to write energies to log file

nstenergy = 1000 ;frequency to write energies to energy file

nstxtcout = 1000 ;frequency to write coordinates to .xtc trajectory

xXtc_grps = system ;group(s) to write to .xtc trajectory (assuming no ndx file is supplied to grompp).
energygrps = system ;group(s) to write to energy file

nstlist = 20 ;Frequency to update the neighbor list

coulombtype = Cut-off

ns_type = grid ; use grid-based neighbor searching

rlist = 3.0 ;cut-off distance for the short-range neighbor list

rcoulomb = 3.0 ; cut-off distance for coulomb interactions

rvdw = 3.0 ; cut-off distance for Vdw interactions

coulombtype = User

vdwtype = User

pbc = no ; Periodic boundary conditions in all the directions

table-extension = 10 ; (nm) Should equals half of the box’s longest diagonal.

tc-grps = system ;Temperature coupling

tau_t = 1.0 ; Temperature coupling time constant. Smaller values = stronger coupling.
ref_t = 80.0 ; "1 reduced temperature unit (see Gromacs manual or SMOG 2 manual for details)
Pcoupl = no ;Pressure coupling

gen_vel = yes ;Velocity generation

gen_temp = 80.0

gen_seed = -1

1d_seed = -1

comm_mode = angular ; center of mass velocity removal.

LisTING 4.2: Sample mdp file for C,, SMOG models used for Gromacs v4.5

The most significant difference is the use of “User-defined” vdW and Coulomb interac-
tions. This is due to the fact that the 10-12 potential is used for contact interactions
in the C, model. In order to run mdrun (next step), it is necessary to generate table
files that define the 10-12 interaction. We provide a tool for generating these tables
($SMOG_PATH/bin/smog_tablegen) with the SMOG 2 distribution, which is described in
Section 5.6.
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After you have generated your tabulated potentials for the 10-12 interaction (i.e. ta-
ble_file.xvg) and you have prepared a .tpr file with grompp, you can run the simulation

with the command:
> mdrun -s run.tpr -noddcheck -table table file.xvg -tablep table_file.xvg

Typically, for protein folding, you will want to avoid domain decomposition and instead
use particle decomposition by adding the option -pd when on a single node. After you

perform your simulation, you can utilize any analysis tools provided with Gromacs.

4.1.3 Examples

Check $SMOG_PATH /examples/gromacs4 for some complete examples with terminal
history.

4.1.4 Note on Domain Decomposition

The [ pairs ] section is treated as a bonded interaction by Gromacs and therefore
all pairs within a single domain are always calculated regardless of the .mdp parameter
rvdw. If you are using -pd with version 4.X or only OpenMP threads in version 5.0,
you can set rvdw to only take into account the non-bonded excluded volume. For the
default models this would be 0.6 nm for all-atom and 1.0 nm for Calpha. These lengths

are derived as ~2.5rnc.

4.2 Using Gromacs 5

Gromacs 5 has a few changes that impact SMOG models. First, we don’t yet provide a
Gromacs 5 distribution with the SMOG enhancements (umbrellas, g_kuh, gaussian con-
tact potentials). So, if you want to use these you can only use Gromacs 4.5. Gromacs
5 itself has changes of note: 1) OpenMP support has replaced the option of particle
decomposition and 2) OpenMP requires cutoff-scheme=Verlet and Verlet doesn’t yet
allow tabulated potentials. This has the largest impact on C, models, which use tab-
ulated potentials. If your simulated system has less than roughly 100 atoms, you can
typically only use a single processor with v5, because additional threads are only allowed
through OpenMP. If your system is large enough, you can use multiple MPI processes
with domain decomposition to scale to multiple cores. When using Verlet lists you have
to use pbc = xyz. For all-atom simulations, Verlet lists are fine, and it is usually best

to use as many OpenMP threads as possible with -ntomp.
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4.2.1 Examples

Check $SMOG_PATH /examples/gromacs5 for complete examples, including terminal
history.

4.3 Using Gromacs 2020

From an interface standpoint, nothing significant changed between 5 and 2020. While
the Gromacs developers have added many new options and have introduced performance

improvements, running SMOG models is largely unaltered.

4.3.1 Examples

Check $SMOG_PATH /examples/gromacs2020 for complete example, including terminal
history.

4.4 Using NAMD

The force field files generated by SMOG 2 are fully compatible with NAMD. To per-
form SMOG models in NAMD, please consult the NAMD manual. For questions about
running SMOG simulations in NAMD), please contact the NAMD support team.

4.5 Using openMM

The force field files generated by SMOG 2 are compatible with openMM. To perform
SMOG models with openMM, please consult the Grossfield Group webpage.

4.6 Using LAMMPS

The force field files generated by SMOG 2 may be converted to a format that is com-
patible with LAMMPS through use of the program (SMOG-converter). For questions

about usage, please consult the SMOG-converter developers.


http://www.ks.uiuc.edu/Research/namd/2.10b1/ug/node70.html
http://membrane.urmc.rochester.edu/wordpress/?page_id=98
https://github.com/CristianMicheletti/SMOG-converter
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4.7 Discrete Path Sampling (only available in Beta ver-

sion)

An alternate method for sampling the landscape is to use Discrete Path Sampling (DPS).
As part of the SMOG 2 package, a script (smog_optim) is provided that will convert the
.gro and .top files into the inputs necessary for DPS using the OPTIM/PATHSAMPLE
suite developed by the Wales Group. Currently supported interactions are: bonds, bond
angles, cosine and harmonic dihedrals, 10-12 and 6-12 contacts, anisotropic position
restraints and Debye-Hiickel electrostatics. As we develop and test the protocols for
smog_optim, this manual will be updated with recommended step-by-step instructions

for DPS SMOG models. For now, we just provide a few examples for how to get started.

Before discussing usage, there are a few important differences between the SMOG force

fields used in Gromacs, and those applied in DPS.

1. Even though the routines required for using DPS with SMOG models are invoked
with the “SB” flag (see listing 4.3), these routines are not structure-based-specific.
That is, these are general routines for calculating bond, angle, dihedral, contacts,
excluded volume and electrostatic energies/forces. Similar to how SMOG models
are implemented in Gromacs, the input force field file (SBM.INP) encodes the
structure-based aspects of the model. Thus, one may define a SBM.INP file that
has many non-structure-based features (e.g. non-specific contacts and electrostat-

ics), even though the “SB” routines would be used.

2. The SB routines in OPTIM apply switching functions to non-bonded terms. The
switching range (ro to 7.) is defined on the third line of SBM.INP. The switching
function is defined as a fourth-order polynomial, which ensures the force continu-

ously reaches zero at r..

3. In Gromacs, one may exclude all non-bonded interaction that are connected by less
than a specific number (nrexcl) of bonds. In OPTIM, exclusions are automatically
generated for all atoms that interact via a bond, bond angle, dihedral, or contact.

nrexcl is not used.

To convert the .gro and .top files into an odata and SBM.INP file, which is necessary for
OPTIM/PATHSAMPLE, use the smog_optim module (described in section 5.4). This
tool may be found in the $SMOG_PATH/bin directory. The script is interactive, and you
will be prompted for all necessary input and options. Once you have organized your

force field for DPS, you will need to perform energy minimization for your structure.


http://www-wales.ch.cam.ac.uk/OPTIM/
http://www-wales.ch.cam.ac.uk/PATHSAMPLE/
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By default, the odata file generated by smog_optim will provide the keywords for min-
imization. The odata file contains the initial coordinates, as well as the calculation

specifications. The odata file should look like the following;:

STEPS 1000000
BFGSMIN 0.000001
POINTS

SB 13.67 48.35 -15.2
SB 12.16 51.69 -14.1
SB 10.07 51.44 -10.94
SB 6.78 53.35 -10.85
SB 4.22 53.53 -8.01
SB 0.53 53.56 -8.78

LisTING 4.3: Header of an example odata file generated by smog_optim

If you selected rigidification when using smog_optim, then there will be the additional
keyword RIGIDINIT in the odata file. In addition to the odata file, smog_optim will also
generate the file SBM. INP, which defines the SMOG force field.

After energy minimizing two structures, you will want to find a connection between
them. To find an initial connection, you need to update the odata file, such that it

starts with:

NEWCONNECT 200 20 1.0 50.0 20 2.0 0.025
MAXERISE 1.0D-4 1.0DO
NOPOINTS

USEDIAG 2

NEWNEB 15 100 0.025
NEBK 500

DIJKSTRA

MAXBFGS 0.4 2.0
EDIFFTOL 0.000005
DUMPALLPATHS

PATH 100 0.001
MAXSTEP 0.05

MAXMAX 1.25

TRAD 0.2

BFGSTS 500 3 20 0.001
NOHESS

ENDNUMHESS

BFGSMIN 0.000005
PUSHOFF 0.1

STEPS 20000
BFGSSTEPS 1000000
UPDATES 200

POINTS

SB ...

LisTING 4.4: Example odata file specifying a double-ended search.
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In this case, the coordinates in the odata file should correspond to the coordinates of one
of the minimized endpoints. The coordinates of the second endpoint should be provided
in a file called finish. finish should simply be a listing of XYZ coordinates (no “SB”
at the beginning of each line). These steps are sufficient to get one started with DPS
using models generated by SMOG 2. Note: Since SMOG models are so computationally
inexpensive, compared to other models, I/O can sometimes become limiting when using
OPTIM. It is advisable that you check the summary statistics at the end of each use of
OPTIM and verify that roughly 90 percent of time is spent on energy+gradient calls.
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SMOG Tools

In addition to applying standard structure-based models, there is often a need to intro-
duce additional system-specific modifications to the force field. To help users implement
some less-than-trivial tasks, we provide a variety of additional scripts for force field mod-
ification. If $SMOG_PATH/bin is in your PATH (this should be done automatically by the

configure script), then the smog tools should already be available on your machine.

5.1 smog adjustPDB

This script helps rename atoms and residues in a PDB file, such that they will conform

to the naming scheme used in a set of template files.

The only required flag is the input PDB file name. You may optionally also explicitly

indicate which mapping file to use with -map.

map file format Starting with SMOG v2.3, the default behavior of smog_adjustPDB
has changed. Previously, only terminal residues were renamed. Starting with v2.3, the

following changes have been introduced:

e An exact matching protocol is now used to determine mapped residue names.
e Support was added for alternate atomic naming conventions (e.g. C3* or C3’).

e One can now ignore (not rename) specific residue names, regardless of the atomic

composition.

Currently, there are 4 types of lines that can appear in the mapping file:

21
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e comment lines: A semicolon can be used to denote a comment. If there are only

white spaces before a comment, then the line will be ignored.

e rename: This is used to globally rename a specific atom. For example, one may
want to use the prime convention, or asterisk convention. As another example, if

you wanted to rename all CA atoms as CAA, then you would give the line:
rename CA CAA

The convention is to begin with rename (not case-sensitive), followed by the atom
name that may appear in the PDB and then the desired atom name (i.e. the name

used in the force field).

e ignoreres: Sometimes one does not want to rename specific residues. Example:
If one wanted to not rename PSU residues, nor its atom names, then the following
line would be added:

ignoreRes PSU

e residue definitions: To define the composition of a residue, start with residue,
followed by the target residue name and then list all atoms that should appear
(i.e. are defined in the associated force field). For example, one could define ALA

in the following way:
residue ALA C CACB N O

Based on this, any residue that has (only) a C, CA, CB, N and O would be renamed
ALA.

Note that the rename option is applied before matching the composition to a
residue. So, if you had a rename definition that converted CF to CA (rename CF
CA), then you would also match ALA if the residue has C, CF, CB, N and O. In
this example, C CA CB N O or C CF CB N 0 would both match ALA. The output
PDB file would reassign the CF atom to be CA.

There is a second strategy to allow allow for multiple types of atom sets to cor-
respond to the same target residue. For example, one may encounter a PDB file
that uses O2 to refer to OXT. SMOG 2 could enable both atom names in a single

residue definition via:
residue ALAT C CA CB N 0 (OXT 02)

This would recognize C CA CB N 0 0XT or C CA CB N 0 02 as ALAT. Since 0XT
is listed before 02, the output PDB file would call the atom 0XT.

A final option with the residue definition line is the use of %first or last. These
tags indicate that, in addition to matching the atoms, the corresponding residue

name will only be substituted if the residue is the first/last residue in a chain.
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This may occur if, for example, one is assigning charges to RNA residues. Since
the terminal residues may have the same atoms, but different charges, then one

may need to assign a different name for the terminal position.

To see the current default format, check out the file share/mapfiles/sbmMapExact.

;This is a mapping file that was generated by smog2

;This defines the composition of atoms in the templates found in:

; /Users/coolsim/smogtemplates

rename 0OP1 01P

rename 03’ 03*

residue A Cl* C2 C2% C3* C4 C4* C5 C5% C6 C8 N1 N3 N6 N7 N9 01P 02* 02P 03* 04* 05% P

residue ALAT C CA CB N (0 01) (OXT 02)

residue A Cl* C2 C2* C3* C4 C4* C5 C5% C6 C8 N1 N3 N6 N7 N9 01P 02% 02P 03* 04* 05% P

residue A3P Ci* C2 C2* C3* C4 C4* C5 C5* C6 C8 N1 N3 N6 N7 N9 01P 02* 02P 03* 04 05% P \%last

LISTING 5.1: example mapping file format

Generating the mapping file: While one can make the mapping file by hand, SMOG 2
can also generate a mapping file that defines all of the residues in a given force field.
To generate a minimal mapping file for a given .bif file, use the gen map option with
the smog2 executable. Note: This will only generate the residue definitions, listing the
exact atom names defined in the force field (i.e. rename, ignoreres and () will not
generated). If a residue has a “meta” attribute defined in the .bif file, then its value will
be included at the end of the atom names with a “%”. For example, if you have a “last”
definition, then meta=¢‘last’’ in the residue definition in the .bif file would lead to

“O%last” being included in the residue definition of the SMOG-generated mapping file.

Legacy map file format When using the -legacy option, the following format should
be used for the map file:

Lines containing a “#” character are interpreted as comments. Each line must have
three strings that are space/tab delimited. The first field is the residue name, as it
appears in the input PDB file. The second is the name to be substituted if the residue
is the first residue in a chain (e.g. N-terminus in a protein), and the third field is the
corresponding substitution for the last residue (e.g. C-terminus) in each chain. The

preprocessing tool will write a modified PDB file smog. pdb.

The script can also renumber atom and residue indices to be sequential within each

chain, and it adjusts atom names to be consistent with the SBM_AA template files.
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Input Option ‘ Usage ‘ Default value
Required
-f <string> ‘ input PDB file name ‘ none
Optional

-map <string> user-defined mapping file name N/A

-legacy use non-matching routines N/A

-removeH strip PDB of any atoms beginning | N/A
with “H”

-insertTER insert TER lines between non- | N/A
consecutive residue numbers

-large use base-N (N>10) numbering for | N/A
residues and atoms

-sort reorder atoms in each residue alpha- | N/A
betically by name

-renumber automatically ~ renumber  non- | N/A
consecutive residues

-subALA always rename C-CA-N-C-CB as | N/A
ALA

-0 <string> output PDB file name adjusted.pdb

-warn [N] convert N errors to warnings 0

~help show options

TABLE 5.1: Flags supported by smog_adjustPDB

5.2 smog extract

It is common when studying large molecular assemblies that you will only want to
simulate a portion of the system. In these cases, it is often convenient to remove many
atoms from the model, and then apply position restraints on the boundary atoms [8].
To facilitate this, smog_extract will take a SMOG .top and .gro file, and produce a new
set of force field files that only include a specified subset of atoms. The atom list can
be given in a Gromacs-style .ndx file. If multiple groups are listed in the ndx file, the
user will be prompted to select a single group. By default, position restraints are not
introduced. If you would like to include position restraints on all atoms that have an
interaction removed during extraction, then use the -restraints flag to indicate the

strength of the restraints. To see all options, use the -h flag, or refer to Table 5.2.

5.3 smog_ions

This module allows one to add ions to your model. The definitions used for the ions

is decided by the user. That is, vdW parameters, mass, charge and name must all be
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Input Option Usage Default value
-f <string> input .top file smog.top
-g <string> input .gro file SMOg.gro
-n <string> index file for group definitions smog.ndx

-of <string>

output .top file

extracted.top

-og <string>

output .gro file

extracted.gro

-om <string>

mapping between orig. and new sys-
tem

atomindex.map

-restraints <float> | turns on restraints on boundary | N/A
atoms

-ndxorder preserve atom ordering given in the | N/A
ndx file, rather than in the top.

-warn [N] convert first N errors to warnings 0

-nogro only convert a top file N/A

-help show options

TABLE 5.2: Flags supported by smog_extract

Input Option Usage Default value
-f <string> input .top file smog.top
-g <string> input .gro file SMOg.gro

-of <string>

output .top file

smog.ions.top

-og <string>

output .gro file

smog.ions.gro

-ionnm <string>

name of the ion to be added

-ionn <integer>

number of ions to add

-iong <float>

charge of ions

-ionm <float> mass of ions none

-ionC12 <float> non-bonded C12 parameter for ions

-ionC6 <float> non-bonded C6 parameter for ions | 0.0

-mindist <float> minimum distance an ion may be | 0.5 nm
placed to any other atom

-t <string> template directory for reading ion | none
parameters

-warn [N] convert first N errors to warnings 0

-help show options

TABLE 5.3: Flags supported by smog_ions

specified. These ions will be place around the existing atoms without introducing atomic

clashes. For a full list of supported flags, see Table 5.3.

5.4 smog optim

smog_optim is currently in development, and the details of its use are likely to change.

To see a complete list of current options, used smog_optim -h.
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Input Option Usage Default value
-f <string> input .top file smog.top

-n <string> index file smog.ndx

-of <string> output .top file smog.rescaled.top
-rc <float> rescale contact weights by factor 1.0

-rd <float> rescale dihedrals weights by factor | 1.0

-help show options

TABLE 5.4: Flags supported by smog_scale-energies

5.5 smog _scale-energies

This tool uses a SMOG .top and .gro file, along with an index file to generate a SMOG
model in which contacts and/or dihedrals weights are modified. This is a common
task when using SMOG models, and we provide this script as a convenience. On the
command line, you must indicate whether you want to rescale dihedrals (-rd <float>)
or contacts (-rc <float>). A value of 0 indicates the interaction should be deleted from
the model. The specific interactions that will be rescaled are determined by the index
file and user input at runtime. That is, if you specify that dihedrals will be rescaled,
you will be prompted to select an index group for rescaling. If all four atoms that form
a dihedral are within the index group, then the weight is rescaled. Only dihedrals of
type 1 are rescaled. If one is rescaling contacts, then the users will need to select two
index groups. Any contacts between the two groups will be rescaled. If the same group

is selected twice, then intra-group contacts will be rescaled.

5.6 smog tablegen

When using user-defined potentials (i.e. not 6-12, or direct Coulomb interactions), then
it is necessary to provide a table file that contains tabulated potentials and forces.

Specifically, Gromacs will consider any tabulated potential of the form:

U = qiq; f(rij) — Bg(rij) + Ah(ri;) (5.1)
where A and B are defined in the .top file, and ¢; is the charge of atom ¢. The functions

f(rig), f'(ri5), 9(ri5), ¢'(rij), h(ri;), W' (ri;) are given by the table file.

smog_tablegen will generate a table file with specific parameters, where h(r;;) = T.LM’
ij

g(rij) = % and f(ri;) = W k is the Debye length, and it is equal to 3.2 /[Clnm~!,

where [C] is the concentration of monovalent ions (Molar) to be described implicitly by
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Input Option Usage Default value
Optional

-N <integer> exponent of attractive non-bonded | 6
interaction

-M <integer> exponent of repulsive non-bonded | 12
interaction

-ic <float> total monovalent ion concentration | 0
(Molar) for DH interaction

-temp <float> simulation temperature correspond- | 300
ing to room temperature (Gromacs
units)

-units <float> units to be used in the simulation | kCal
(kCal or kJ)

-sd <float> distance (nm) to start switching | 1.0
function for electrostatics

-sc <float> distance (nm) at which switching | 1.5
function enforces elec. interactions
go to zero

-tl <float> length (nm) of table 5

-table <string> output table file name table.xvg

-help show options N/A

TABLE 5.5: Flags supported by smog_tablegen

a Debye-Hiickel potential. [C] should be the sum of all monovalent ion concentrations,

regardless of electric charge. Table 5.5 describes the available options.
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5.7 SCM.jar

v

This section describes a Java application SCM. jar that computes the “Shadow” map,
a general contact definition for capturing the dynamics of biomolecular folding and
function. It is described in the literature here [9]. A contact map is a binary symmetric
matrix that encodes which atom pairs are given attractive interactions in the SBM
potential. In the context of a SBM, the native contact map should approximate the
distribution of stabilizing enthalpy in the native state that is provided by short range
interactions like van der Waals forces, hydrogen bonding, and salt bridges. Any long
range interactions or nonlocal effects are taken into account in a mean field way through

the native bias.

shadow

FIGURE 5.1: The Shadow contact map screening geometry. Only atoms within the

cutoff distance C are considered. Atoms 1 and 2 are in contact because they are within

C and have no intervening atom. To check if atoms 1 and 3 are in contact, one checks

if atom 2 shadows atom 1 from atom 3. The three atoms are viewed in the plane, and

all atoms are given the same shadowing radius S. Since a light shining from the center

of atom 1 causes a shadow to be cast on atom 3, atoms 1 and 3 are not in contact. See
Section 5.7.1.

Role of SCM. jar in SMOG 2

Internally SMOG 2 uses SCM. jar to compute contact maps. From the user’s point of
view the contact map can be of two types, all-atom or coarse-grained. An all-atom map
returns the atoms that are in contact based on the Shadow definition. A coarse-grained
map (e.g. to be used with the C, model) is created from an all-atom map. The coarse-
grained map consists of residue-level contacts. A residue-level contact exists if there is
at least one atom-atom contact between two residues. This is why a PDB containing
all heavy atoms is required by the tool. When coarse-graining SMOG 2 asks that the

user provide an all-atom template in addition to the coarse-graining template that tells
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SMOG 2 how to interpret the all-atom PDB in order to interface with SCM. jar. The

actual command within the code is:

java $memoryMax -jar $ENV{SMOG_PATH}/src/tools/SCM.jar -g $groFile4SCM
-ndec 4 -t $topFile -o $shadowFile -ch $ndxFile $SCMparams

The additional $SCMparams are set in the subroutine setContactParams(). This sub-
routine reads the attributes in the Contact tag of the .sif template file. The standalone
tool is available within the SMOG 2 tools directory for users that want to create their
own customized maps (also the source code is there). The rest of the chapter describes

the basics of using the tool.

Locating SCM. jar: The jar should be located in $SMOG_PATH /src/tools.
Citing SCM. jar: The citation for SCM. jar is [9].

Running SCM. jar

Like any java application, no compilation is necessary, but a virtual machine is required;
SCM. jar requires a sufficiently recent JRE. SCM. jar reads SMOG formatted Gromacs
input files. Important! The all (heavy) atom geometry must be used, even if
the output will be a coarse-grained residue-based map for a C, model. The atomic co-
ordinates are read in .gro format and the bond connectivity is read via a .top obtained
from the SMOG webtool (or source distribution). The topology is required since bonded
atoms shadow each other differently and since contacts are automatically discarded be-
tween two atoms if they share a bonded interaction. At the command line, the basic

syntax is

user$ java [-Xmx1000m] -jar SCM.jar -g grofile -t topfile -o outputName \
[-—chain chainFile] [--default | -m {shadow,cutoff}]

-Xmx1000m assigns 1000 MB of RAM to the Java virtual machine heap. With large
complexes (>1eb atoms) the default heap allocation can run out which gives the following

error:

java.lang.0OutOfMemoryError: Java heap space

The output all-atom contact file format is

chain_i atom_i chain_j atom_j [distance]
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and similarly, the output residue contact file format is

chain_i residue_i chain_j residue_j [distance]

Some examples

e Shadow map, atomic contacts, shadowing radius 1 A and cutoff 6 A (default sizes).
See Figure 5.1 for definition of radius and cutoff. Add --chain if you have multiple
chains, since the .gro format does not allow for chain information. Specify the

chains file you get from your SMOG output.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--default [--chain chainsFile]

e Same as above, but including the correction such that the algorithm exactly follows

the description in Figure 5.1 (see Section 5.7.1).

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--default [--chain chainsFile] --correctedShadow
e Shadow map, atomic contacts, shadowing radius 2 A and cutoff 4 A.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-m shadow -c¢c 4 -s 2 [--chain chainsFile]
e Cutoff map, atomic contacts, and cutoff 4 A.

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-m cutoff -c 4 [--chain chainsFile]
- OR -

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

-s shadow -s 0 -c 4 [--chain chainsFile]
e Shadow map, residue contacts, default, include contact distances

user$ java -jar SCM.jar -g protein.gro -t protein.top -o contactsOut

--distances --coarse CA [--chain chainsFile]
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e To calculate over a trajectory instead of a single structure, use --multiple X,
where X is the number of frames in the trajectory .gro file. Assumes that the
format of proteinTraj.gro is the same as the output of trjconv. This saves
time relative to looping over many grofiles because the topology (and therefore

the bonded list) is only read once.
user$ $GROMACS/trjconv -f traj.xtc -o proteinTraj.gro

user$ java -jar SCM.jar -g proteinTraj.gro -t protein.top -o contactMapsOut

--default --multiple 1000 [--chain chainsFile]

Some details of coarse-graining

The coarse-grained contact map returned is only strictly recommended for use with
C, models of proteins, and where the input PDB has an all-atom representation. For
various modeling applications, it is desirable that the program not die with an error if
the PDB doesn’t only contain all-atom protein with each residue containing a CA atom.
Therefore, the behavior is that the program will choose one atom from each residue to
stand in as the representative coarse-grained position. It chooses, in order of preference:

CA, N1, first atom in the residue. This really only matters for the --distance option.
Full configuration parameter list

The following will give a full list of configuration options:

user$ java -jar SCM.jar -help

Running SCM. jar through the webtool

On the webserver (http://smog-server.org/Shadow.html) one can build a shadow map
from a SMOG formatted PDB file.

5.7.1 Corrected algorithm

From the beginning, SCM.jar has had a bug where asin was replaced by atan in the
code calculating the tangents to the spheres (see Figure 5.1). This went undetected
since the error is small when the distances between atoms is larger than the shadowing
size, roughly 3% error in the angle for a shadowing atom 4 A away. This works out

to allow slightly more contacts. The option --correctedShadow (introduced in v2.3)
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implements the exact algorithm of Figure 5.1, whereas SCM.jar without that switch

continues to use the “buggy” form.

If the user wishes to use --correctedShadow, but wants to create maps as close to the
“buggy” maps as possible, a good rule of thumb is to use a slightly smaller shadow
size. For example, using --correctedShadow -m shadow -s 0.975 -c 6 for the CI2
protein (1YPA.pdb), gives the same number of contacts (599) with 99.5% of the contacts

identical.

5.8 WHAM. jar

The Java application WHAM. jar at its heart uses a well established algorithm described
here [10]. WHAM. jar is tailored for the sort of analysis that is most often performed on
SBMs, including free energy perturbation, thermal averaging of reaction coordinates and
free energy as a function of (1 or 2) reaction coordinates. The basic operation involves
providing WHAM. jar with a set of histograms from constant temperature simulations,
which can vary in both temperatures and umbrella parameters, and a configuration file.
Based on the options set in the configuration file (or at the command line) WHAM. jar
will perform the appropriate analysis. The WHAM algorithm itself [10] provides an
optimal density of states (2). From  many thermodynamic quantities of interest can

be calculated.

Some powerful features of WHAM. jar are worth mentioning. As the system size grows,
the energy grows, and this can lead to overflow of double precision floating point num-
bers (11 bit exponent, 2'! ~ 1000) when exponentiating the energy. WHAM.jar uses a
32 bit exponent, allowing energies up to 10°. The efficiency of SMOG models can allow
for multiple umbrella potentials to be simultaneously employed and sufficiently sam-
pled. WHAM. jar can reweight arbitrarily many umbrellas. However, note that the code
currently only allows for the umbrella energy to be quadratic along the umbrella coordi-
nate (but this can be easily changed). As more dimensions are added to the histogram,
i.e. multiple reaction coordinates and umbrella coordinates, the time and memory re-
quirements dramatically increase. WHAM. jar uses a sparse array data structure, which
eliminates memory issues and allows arbitrary histogram bounds and steps to be used.
Additionally, Java Threads are used. Set threads <int> in the configuration file to

make use of multiple cores.
Running WHAM. jar

Like any java application, no compilation is necessary, but a virtual machine is required;

WHAM. jar requires JRE 1.6.0_29 or greater. At the command line, the basic syntax is
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user$ java [-Xmx100m] -jar WHAM.jar --config configurationFile

-Xmx100m assigns 100 MB of RAM to the Java virtual machine heap. With large his-
tograms (4 or 5 dimensions) the default heap allocation can run out which gives the

following error:

java.lang.OutOfMemoryError: Java heap space

The error handling is often not very user friendly, so make sure to look at the formatting

of examples if you are running into Java exceptions during runtime.

5.8.1 Configuration file

5.8.1.1 Example 1: Combining constant temperature runs

Find the example files at $SMOG_DIR/examples/whamExamples/1. This example intro-
duces the basic use of WHAM. jar by reading histograms from 3 constant temperature
runs (T=144.2,144.3,144.4), running WHAM, and outputting a specific heat (C, dia-
gram) and a free energy with respect to a reaction coordinate Q. Here, Q is the number

of native contacts formed.

Each trajectory (i.e. thermodynamic state) gets its own file. The histogramming is
controlled by the user. Reducing the number of bins speeds up the calculation, but
reduces resolution of the output. Too many bins will result in a lack of data per bin and

noise will dominate.

kB 0.008314 # Boltzmann constant

tolerance .001 # when convergence is reached

overwriting # WHAM.jar is allowed to overwrite
# existing files

threads 1 # increase to utilize multiple cores

##### define internal histograming #####

numDimensions 2 # space delimited file, two columns: Potential_energy and Q
# energy

numBins 144

start -88
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step 2

# Q
numBins 100
start O

step 2

##t### trajectory files (each with 2 columns: Potential_energy and Q)

numFiles 3

name data/hist.144.2.in temp 144.2 # temp specifies the temperature of

# this trajectory
name data/hist.144.3.in temp 144.3
name data/hist.144.4.in temp 144.4

The Boltzmann constant (kB) relates the energy units used in the histogram files
to the temperature units given with temp. The value shown here is appropriate
for Gromacs and SMOG, where the temperature is the Gromacs temperature in

Kelvin.

The histogram files are designated with relative paths with respect to the directory
where WHAM . jar is launched. Histogram files are space delimited columns with

the following format:
energy reaction_coord_1 [ more reaction coords ] [ umbrella coords ]

The total span of the histogram is from start to start+numBins*step.

overwriting is used in the example so that it doesn’t die while running due to the
prior existence of output files. One can remove this parameter in order to ensure

that WHAM.jar doesn’t overwrite some previous analysis.

To run WHAM add the following to the config file:

run_wham # tells the program to compute density of states

dosFile dos # filename for density of states output

Only the histogram bins that have at least one data point are written. The density

of states histogram columns are in the same order as the input with an additional

column that is the density at the indicated bin. After the program computes the density

of states (written to dos), there are routines that perform various integrals to obtain

thermodynamic information.

For instance, to calculate the specific heat add the following to the config file:
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run_cv # tells the program to compute specific head from dos

### run_cv parameters

startT 135 # start temp

deltaT 0.1 # print every 0.1 degree
ntemps 200 # for a total of 200 prints

run_cv_out cv # name of cv outputfile

e There will be one output file with five columns:
temperature Cv enthalpy free_energy entropy

o CW(T) =(E?) — (E)?

To compute F(Q1), S(Q1), E(Q1) at T from Q(E, Q1) or F/(Q1,Q2), S(Q1,Q2), E(Q1,Q2)

from Q(FE,Q1,Q2) add the following to the config file:

run_free #tells the program to compute free energies
startTF 135 # start temp

deltaTF 1 # print every 1 degree

ntempsF 20 # for a total of 20 prints

run_free_out free/ # filename is ${run_free_out}${temp x 10}

#NOTE any output file can have directory structure

e Since the first column is always energy, the program knows the second column is

the reaction coordinate.

e There will ntempsF files with four columns:

reaction_coord_value free_energy enthalpy entropy

o F(Q1) = kTInSpQE, Q1) exp(—E/kT)

_ ZpEQUE,Q1) exp(—E/kT)
<E(Q1)—-z;klﬂulénegx—EMT)

o T'S(Q1) = F(Q1) — E(Q1)

If two reaction coordinates are given (i.e. numDimensions = 3), run_free assumes
you want two dimension free energies, i.e. F(Q1,Q2). Remember to add another

histogram descriptor to the config file:
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# Q2
numBins 100
start O

step 2

To compute (Q1(T)) from Q(E, Q1) or (Q1(Q2)) at T from Q(FE,Q1,Q2) add the fol-
lowing to the config file:

run_coord #tells the program to compute coordinate averages
startTC 135 # start temp

deltaTC 1 # print every 1 degree

ntempsC 20 # for a total of 20 prints

run_coord_out coord # filename

Since the first column is always energy, the program knows the second column is

the reaction coordinate.

There will be one output file with two columns:

temperature <Q(T)>

_ YpQiQ(E,Q1)exp(—E/kT
(Q(T)) = fEé(é,Ql)lgxp?ﬁE/lfT))

If two reaction coordinates are given (i.e. numDimensions = 3), run_coord as-
sumes you want the expectation value of @1 (second column) as a function of Qs
(third column), i.e. (Q1(Q2)). The temperature is taken as startTF. Remember
to add another histogram descriptor to the config file:

# Q2
numBins 100
start O

step 2
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Template-Based Approach

6.1 Introduction to templates

SMOG 2 offers increased versatility over SMOG v1 by shifting to a template-based
approach for defining molecular structures. Each template allows for direct control of
the structure-based energy function, which may include (but is not limited to) multi-
resolution models and models that include non-specific interactions. The plug-and-play
nature of the templates has the additional advantage of force field portability and easy

sharing of user-created variations of structure-based potentials.

A single SMOG “template” is comprised of four required XML-formatted files, plus an
optional ASCII file. XML format was adopted because of its consistent formatting,
ease of editability and readability, and there are widely available program modules to
generate and parse XML files. Furthermore, XML allows for schemas, a content format
restriction file, to which the template files must conform, which adds an additional layer
of error checking capabilities. This chapter assumes that the user knows the basics of
XML formatting. Users unfamiliar with XML formatting may want to check out the
W3schools’ website.

Table 6.1 summarizes the purpose of each template file. In Chapter 7, we show how to

add new residues to the template files for an all-atom structure-based model.

6.2 SMOG 2 Templates

SMOG 2 expects four template files to be present in a single folder (i.e. the template
folder). As discussed in Chapter 3, if one is not using a default model, then the template

folder name is a required argument when running SMOG 2. A template folder can only

37
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File Purpose

Biomolecular Information File (.bif) | defines the structure of
biomolecules to be supported

Setting Information File (.sif) defines interaction function
declarations

Bond File (.b) defines bonded interactions
between atoms

Nonbond File (.nb) defines non-bonded interac-
tions between atoms

extras file (.extra file; optional) used to add static content to
force fields

TABLE 6.1: Descriptions of the four required files, and one optional file, that comprise
a single template. The expected suffix of each file is shown in parentheses.

contain one of each file type. If your template folder contains more than one file of
a specific file type, the program will exit with an error. Each file contains unique

information, as described below.

6.2.1 Biomolecular Information File (.bif)

The Biomolecular Information File (from here on called .bif) defines the covalent struc-
ture of all residues described by a particular force field. Each residue is defined in the
.bif file by declaring all the atoms in that residue, the bonds between the atoms and the

improper dihedrals between the atoms.

Residues

Each residue is individually defined between the <residues> and </residues> tags. As
an example, the text below shows how one would define the residue ALA, which contains

5 atoms.

<residue name="ALA" residueType="amino" atomCount="5">
<atoms>
<atom bType="B_1" nbType="NB_1" pairType="P_1">N</atom>
<atom bType="B_1" nbType="NB_1" pairType="P_1">CA</atom>
<atom bType="B_1" nbType="NB_1" pairType="P_1">C</atom>

<atom bType="B_1" nbType="NB_1" pairType="P_1" charge="-1.0">0</atom>

<atom bType="B_1" nbType="NB_1" pairType="P_1">CB</atom>
</atoms>
<bonds>
<!--BACKBONE-->
<bond energyGroup="bb_a">
<atom>N</atom>
<atom>CA</atom>
</bond>

<bond energyGroup="bb_a">
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<atom>CA</atom>
<atom>C</atom>

</bond>

<bond energyGroup="bb_a">
<atom>C</atom>
<atom>0</atom>

</bond>

<!--FUNCTIONAL GROUP-->

<bond energyGroup="sc_a">

<atom>CA</atom>
<atom>CB</atom>
</bond>
</bonds>
<impropers>
<improper>
<atom>CB</atom>
<atom>CA</atom>
<atom>C</atom>
<atom>N</atom>
</improper>
</impropers>

</residue>

LISTING 6.1: Residue section of .bif file

The attribute name is the name of the residue, as used in your PDB file. The attribute
residue residueType is the type of residue, in this case, an amino acid residue. Finally the
optional attribute atomCount allows the user to explicitly set the total number of atoms
to be counted for normalizing energies. That is, the total atom count is used in the
energetic scaling procedure of dihedrals and contact energies, as described in Appendix
A. This feature is useful when including many copies of a ligand in your system, since
the energetic normalization should only be based on the protein, or RNA, and not the
multiply-copied ligands. In such a scenario, the user would set atomCount to 0. If
atomCount is not defined, SMOG 2 automatically uses the total number of atoms listed

under the <atoms> tag.

The <atoms> tag declares all the atoms in the residue. Note that all the atoms within a
specific residue in your PDB must be listed here. If the PDB and .bif are not consistent,
the program will terminate with an error. This is the reason that the default templates
differentiate between the C-terminal and non-terminal protein residues (See Chapter 3).
Each atom has a bond type bType, a non-bond type nbType and a pair type pairType.
The bond type attribute is used in the generation of the bonded interactions (bonds,
angles, and dihedrals). Likewise, the non-bond type attribute is used in the generation
of the non-bonded interactions. The pairType attribute is used in the generation of
contact interactions (6-12, 10-12 or Gaussian interactions). In the example above, we

also show the optional charge attribute, which allows the user to specify the charge of
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an atom within a residue. Using charge within an atom declaration will supersede any

charge assignment based on nbType (see below).

The <bonds> tag contains all the bonds that should be present in the residue. Each bond
in a residue is listed under the <bond> tag. The atom names must match those listed in
the <atoms> field. The bond tag also has an attribute called energyGroup that allows
for one to define heterogeneous energetics in the system. The energy group attribute is
used in conjunction with the bond types to determine the dihedral interaction. Using
the bonds declared here, the program dynamically calculates all angles and dihedrals

that can be defined for the molecule.

The <impropers> tag contains all the improper dihedral angles in the biomolecule. The
tag <improper></improper> holds four atom tags. The order of the four atoms defines
a specific improper dihedral within a residue. This feature is used to add dihedrals that

cannot be determined based on bond geometry.

Connections

In addition to defining a residue, the .bif file is also used to define how sequential
residues are covalently connected. Listing 6.2.1 shows how two residues of type amino
are covalently linked. The attribute residueTypel and residueType?2 declares how a
residue of type residueTypel at position n should be connected to a residue of type
residueType2 at position n+1. The residue types are matched based on the residue
definitions. Much of the structure of the connection element is similar to that of the
residue element. There is a single bond, whereby the first atom belongs to the nth
residue and the second atom belongs to the (n+1)th residue. We can also define a
single improper dihedral, though this is not a requirement component of all connection
definitions. In the context of impropers, the special character suffix “+” is used to
declare atoms that belong to the (n+1)th residue. In listing 6.2, the N atom belongs to
the (n+1)th residue.

Note: If you do not want to covalently link residues that are listed sequentially in the
PDB file, then you should add the attribute connect=no to the definition of the first
residue type within the residue declaration. This could be helpful if you are modeling
ions, where each ion is listed as a single residue, but a block of ions appear in the PDB
file between TER lines.

<connections>
<!-- AMINO/AMINO -->
<connection name="amino-amino" residueTypel="amino" residueType2="amino">
<bond energyGroup="r_a" >

<atom>C</atom>
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<atom>N</atom>
</bond>
<improper>
<atom>0</atom>
<atom>CA</atom>
<atom>C</atom>
<atom>N+</atom>
</improper>
</connection>

Li1STING 6.2: Connection section of .bif file

6.2.2 Setting Information File (.sif)

While the .bif file is used to define the covalent geometry of each residue, the Setting
Information File (.sif) is used to control the distribution and functional form of the
energetics, which includes the inter-dihedral dihedral ratios, contact-to-dihedral ratios,

contact map settings and function declarations.

Functions

The <functions> tag should list all the functions that the model requires.

<functions>
<function name="bond_harmonic" directive="bonds"/>
<function name="bond_type6" directive="bonds"/>
<function name="bond_bytype" directive="bonds"/>
<function name="angle_harmonic" directive="angles"/>
<function name="angle_free" directive="angles"/>

<function name="

angle_bytype" directive="angles"/>

<function name="dihedral_cosine" directive="dihedrals"/>

<function name="dihedral_harmonic" directive="dihedrals"/>

<function name="dihedral_free" directive="dihedrals"/>

<function name="dihedral_bytype" directive="dihedrals"/>

<function name="contact_1" directive="pairs" exclusions="1"/>
<function name="contact_2" directive="pairs" exclusions="1"/>
<function name="contact_gaussian" directive="pairs" exclusions="1"/>

<function name="contact_free" directive="pairs" exclusions="0"/>

</functions>

LisTiNG 6.3: Example of functions section of a .sif file

All supported functions are defined using the <functions> tag. These function names
are mapped to specific subroutines in src/smogv2. To add a new interaction type, follow
the examples already in the code. Note: These functions are simply mappings to defined

Gromacs interactions. If it doesn’t exist in Gromacs, it won’t help to add it here. The
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interactions currently in the code are listed in Table 6.2. If you add useful interactions

please let us know so that we can incorporate them into the default distribution.

The function tag has two attributes, directive and exclusions. directive takes
a string and specifies the topology directive under which to write out the interaction.
exclusions is boolean and specifies whether to write out the atom pair additionally
under the [ exclusions ] directive. In Gromacs this means that the atom pair is not
included in the non-specific excluded volume interaction list. This is because the pair
interaction has its own excluded volume part and it shouldn’t be double counted. Since

there can be interactions defined that do not include excluded volume, we include the

option for flexibility.

SMOG 2 input Gromacs .top
Name Args. declaration| ftype
bond_harmonic ro (nm), € (¢/nm?) [ bonds | 1
bond_type6® ro (nm), & (¢/nm?) [ bonds | 6
angle_harmonic 0o (deg), ep (e/rad?) [ angles | 1
dihedral_harmonic | ¢y (deg), €, (e/rad?) [ dihedrals | | 2
dihedral_cosine” oo (deg), ep (€), multiplicity | [ dihedrals | | 1
dihedral_cosine4® | ¢g (deg), ep (€), multiplicity | [ dihedrals | | 4
contact_1¢ N, M, o (nm), ec (€) [ pairs ] 1
contact_24 f(0), g(o), o (nm), ec (€) [ pairs ] 1
contact_gaussian® | ec (€), riex (nm'?), o (nm), ro | [ pairs ] 6
(nm

& Can be designated as a contact potential in .nb for applications like re-
straining bound ions or elastic network models.

P SMOG 2 dihedral parameters in the template file correspond to the func-
tional form ep[l — cos (n (¢ — ¢p))]. However, the parameters in a top file
are given for the functional form of ep cos (n¢ — ¢o)], which is required by
Gromacs.

¢ Minimum at native distance if using ? for o.

d Minimum at native distance if using ? for o. Need to include a table file
with -tablep with mdrun.

¢ Details in Appendix A.3.5.1.

TABLE 6.2: Functions available in SMOG 2. The energy unit € here means the reduced
energy unit (see A.4), which is equivalently kJ/mol in the Gromacs .top file.

Declaring a contact type

There are two ways to declare Lennard-Jones-style potentials for contacts (See Table
6.2): contact_1 and contact_2

The form of the potential for contact_1 is:

v A B
tact = 7 T TN
contac TM 'I"N
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A and B are automatically evaluated, such that the minimum is at distance o and depth

€. Distances are calculated based on the input PDB if “?” is given in the o field.

The form of the potential for contact_2 is:

Vcontact =€ (f(U)G(T) - g(U)H(T» (6'2)

f(o) and g(o) are expressions that are evaluated using the native distance if “?” is given
for 0. The functions G(r) and H(r) are typically provided to Gromacs via table files
(See Section 5.6).

Group Settings

Structure-based models have two classes of energy groups: contact groups and dihedral
groups. Each contact group represents a collection of contacts, and each dihedral group
represents a collection of dihedrals. These energy groups are used for energetic scaling

of interaction strength.

Uap=... + Z GBBFD(Qf)) + Z EscFD(qb) (6.3)
backbone sidechain
+ Z 6(]Fcorltauzt:s(7°) + ... (6.4)
contacts

Shown above are the dihedral and contact terms of the all-atom potential. Shown below
are the energetic scaling factors for dihedrals and contacts, and their respective attributes

under the .sif file.

egg _ intraRelativeStrength bb (6.5)

esc  intraRelativeStrength sc '
Z €BB + Z €sc + Z ec = Total non-ligand atoms (6.6)
> e+ esc  dihedrals groupRatio (6.7)

S ec "~ contacts groupRatio '

The program automatically calculates the total number of atoms used in the energetic
scaling (ligands are excluded in the default models). Although the scaling equations
shown above are limited to residue types with only two dihedral types (backbone and

sidechain dihedrals), and a single contact type, the program allows for scaling equations
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to be generalized to more than two dihedral types and more than one contact type. The

energy group ratios are contained within the <Groups> tag.

<energyGroup name="bb_n" residueType="nucleic" intraRelativeStrength="1" normalize="1"/>

<energyGroup name="sc_n" residueType="nucleic" intraRelativeStrength="1" normalize="1"/>
<energyGroup name="pr_n" residueType="nucleic" normalize="0"/>

<energyGroup name="ip_n" residueType="nucleic" normalize="0"/>

<energyGroup name="r_n" residueType="nucleic" normalize="0"/>

<contactGroup name="c" intraRelativeStrength="1" normalize="1"/>

<groupRatios contacts="2" dihedrals="1"/>

LISTING 6.4: Energy group section of .sif file

The two classes of energy group ratios, dihedral and contact ratios, are determined by
the <energyGroup> and <contactGroup> tags respectively. The residueType attribute
is used to designate the residue type the scaling factors of a particular energy group is
used for. The name attribute is the label for the energy group. The name attribute
used here is matched to the energyGroup attribute under <bond> tag in the .bif file.
The name of a particular contact energy group will be used later when declaring contact

interaction functions in the subsequent section of this chapter.

The normalize attribute for each energy group is a boolean (1 or 0), and it is used to
determine if a particular energy group should be included in energy normalization (see
equation 6.6). For the all-atom model, the dihedral group with the name “pr_n” (which
represents the nucleic planar rigid dihedrals) has a normalize option set to 0, indicating
that planar dihedrals in nucleic acids will not be part of the normalization. In contrast,
in the all-atom model, sidechain dihedrals are normalized, as are backbone dihedrals
and contact energies. Accordingly, those energy groups have the normalize option set to
1. The intraRelativeStrength attribute is the relative ratio of stabilizing energy within

the different class of energy group for a particular residue (equation 6.5).

Finally we use the <groupRatios> tag to set the energy partition between the two classes

of energy groups according to equation 6.7.

6.2.3 Bond File (.b) & Nonbond File (.nb)

The .b file is used to define all bonded interactions, which includes bonds, angles, and
dihedral. The .nb file is used to define all the non-bonded interactions, such as contacts,

1-4 pairs, and excluded volume.

Bonded Interactions
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We first discuss how to define a basic bond interaction for the all-atom model.

<!-- BONDS -->

<bonds>
<bond func="bond_harmonic(?,10000)">
<bType>*</bType>
<bType>*</bType>
</bond>
<bond func="bond_type6(?,200)">
<bType>*</bType>
<bType>MG</bType>
</bond>

</bonds>

LISTING 6.5: Bonds section of .b file

Recall that each atom is given a bType when they are declared in the .bif file. Given a
particular bonded interaction (bonds, angles, dihedrals, impropers), the functional form
for a bonded interaction is assigned by matching the combination of the bTypes in that
interaction. The first <bond> tag (line 3 in Listing 6.5) is used to assign a function
called bond_harmonic to two bonded atoms of any type. Since the vanilla model has
only B_1 atoms, the *s could be replaced with B_1, and the same bonds would be
assigned. Recall under Listing 6.3, line 2, we defined bond_harmonic() as a type 1
function under the bonds directive (harmonic bond function). The input parameters
for bond_harmonic() are ry and €pong. In this case we use the special character “?” to
tell SMOG to calculate the native bond length (rg) from the PDB structure file. You
can instead also give an specific value for the bond distance. This feature can be useful
when adding nonspecific/empirical terms (e.g. an AMBER/CHARMM backbone) to the

potential. However, the extras file may also be used to define non-specific parameters.

The bType attribute here can take either an exact bond type or a special wildcard “*”

character that matches to all available bTypes. For the case of the all-atom model, since
all the bType is identical, we can instead also defined the bond interaction as shown
under the <bond> tag in line 8 of Listing 6.5. Please note that the program will
assign the interaction that most closely matches the bTypes of a given atom
pair. One needs to be careful not to declare interactions that conflict with one another.
For example, if your system contains a bond between atoms of bType B_1 and B_2, and
bond definitions are only given for bTypes B_1-* and B_2-*, then SMOG would not know
which function to apply, and it will exit with an error. However, if one also explicitly

defines a bond function for B_1-B_2 pairs, that bond would take priority.

The angle interaction follows a similar form as bonds, but instead of expecting two bType

attributes, it requires three. The bType attribute in this case is symmetric to the central
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bType. When matching bond angles, the angle definition that matches the most atoms
identically will be used. Again, if an equal number of atoms match in multiple angle

definitions, there would be ambiguity, and SMOG will quit.

The “dihedral_cosine” function is classified under the dihedral directive with function
type 1 in the .sif file (Listing 6.3 line 3). The arguments are of the form (¢g, €4, mult).
As introduced earlier, the special character “7?” tells the program to calculate the native
value from the PDB structure file. In this case we ask the program to calculate the
dihedral angle for all dihedral interactions that involve the bType combination *-*-*-*,
By using the “?” argument, along with a multiplicity factor (third argument), we tell
the program to multiply all the ¢y values by the multiplicity factor. More generally,
one may provide any function for the angle calculation. For example, if you were to use

(7*2-1), the angle would be evaluated as: native angle, times 2 and minus 1.

Fp () = (1 - cos(é — ¢o)) + 0.5(1 — cos(3(6 — ¢0))) (6.8)

Equation 6.8 shown above is the dihedral interaction function used in the all-atom model.

The code Listing 6.6 shows how to define assign Fp(¢) to all dihedrals in a system.

<dihedral func="dihedral_cosine(?7,1,1)+dihedral_cosine(?,0.5,3)" energyGroup="bb_n">
<bType>*</bType>
<bType>*</bType>
<bType>*</bType>
<bType>*</bType>
</dihedral>

LISTING 6.6: Dihedral section of .b file

As shown in the example, multiple function can be applied to the same dihedral angle
by including a sum of functions (e.g. func=“f(..)+g(..)+h(..)”). Currently, only sums
of functions may be given in the .b file. However, subtractions can be introduced by

assigning a negative weight to an interaction.

The special keyword “?” has limitations in where it can be used. For bonds and angles,
it can only be used for the first input parameter to a function. For dihedrals declared
as type 1, it can be used for the first two input parameters to a function. In the case of
dihedrals, the second input parameter for a type 1 dihedral is the energetic scaling term.
The “?” option is used to tell the program that the dihedral is considered under the

global energy normalization procedure. €4 is dynamically calculated by the program.

A note on assigning dihedrals: As with bonds and angles, it is quite easy to provide

multiple bType sequences that will match to the same atoms in a system. For example,
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if you define a dihedral function for B_1-B_2-*-*, as well as B_1-*-*-* then a dihedral in
your system between atoms (B_1,B_2,B_1,B_1) would match both. To determine which
function should be applied, a scoring function S is used. S is defined as 2 times the
number of exactly matching bTypes, plus 1 times the number of wildcard matches. If
(at least) one of the atom positions does not have an exact match, nor a wildcard, then
S = 0. In the current example, S = 6 for the first definition and S = 5 for the second.
Accordingly, the B_1-B_2-*-* definition would take priority. If two dihedrals have equal
S values (ambiguous assignment), or S = 0 for all dihedral functions (i.e. none match),

then the program will quit with an error.

Non-Bonded Interactions

The .nb file is used to define non-bonded interactions, including native contacts and

non-specific interactions.

<!-- DEFAULTS -->

<defaults gen-pairs="0" nbfunc="1" gmx-combination-rule="1" fudgeLJ="1" fudgeQQ="1"/>

<!-- GENERAL NONBONDS -->

<nonbond mass="1.00" charge="0.000" ptype="A" ¢c6="0.0" c12="5.96046e-9">
<nbType>NB_1</nbType>

</nonbond>

<!-- CONTACTS -->

<contact func="contact_1(6,12,7,?)" contactGroup="c">
<pairType>*</pairType>
<pairType>*</pairType>

</contact>

LISTING 6.7: Contacts section of .nb file

Listing 6.7 shows how to define non-bonded and native contact parameters. The nbType

value defined for each atom in the .bif is matched to the nonbond declaration.

Note: the contacts are placed in the [ pairs ] section in the topology file which was
originally used for 1-4 pair interactions. For structure-based models, it has been applied

to include native contacts.

For structure-based models, a non-bonded interaction is a volume exclusion interaction
usually defined as the Lennard-Jones 6-12 term. This is specified with the nbfunc tag
in the defaults element in the .nb file. In addition, the parameters may be written
in the .top file using the c6-c12 convention (gmx-combination-rule=1), or € — o con-
vention (gmx-combination-rule=2). When using gmx-combination-rule=2, SMOG 2

will write values of ¢ in the atomtypes and pairs sections that preserve the intended
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SMOG functional form (Eq. 6.1), even though Gromacs interprets o in terms of a tradi-
tional LJ function (4e [(%)12 — (%)6} ). Gromacs generates these interactions using the

information provided in the [ defaults ] and the [ atomtypes ] sections.

The non-bonded interaction declaration in SMOG 2 contains the atom attributes: mass,
charge and atom type, as well as the explicit ¢6 and c12 terms for the Lennard-Jones
function. If one wanted to include non-specific attractive interactions between atoms,

then a non-zero value should be given for the ¢6 parameter.

You can also define fudge factors for 1-4 L.J and 1-4 Coulomb terms. None of the defaults
are required to appear in the templates. If values are not defined, then SMOG 2 will
assign gen-pairs=0, gmx-combination-rule=1, nbfunc=1, fudgeLJ=1 and fudgeQQ=1.

A contact function declaration includes the additional contactGroup attribute, which is
used to map the function to specific groups of contacts. For example, in Listing 6.4, the
contact group ¢ was declared with intraRelativeStrength=1 and normalize option set to
1 (true).

SMOG 2 supports two types of interactions for native contacts. Since the contact in-
teractions are unique to SMOG 2, refer to Table 6.2 for appropriate use. With code
Listing 6.7, due to the use of “7” marks, the contact parameters ec, ¢6, and c12 would
be calculated automatically by the program using energy normalization and the PDB
structure. €¢ is also calculated dynamically through the scaling equations. If one uses
the 10-12 or N-M functions, table files have to be included (see Section 4.1.2 for syntax
and details.)



Chapter 7

Adding a new residue

This chapter provides a step-by-step tutorial on how to add a new residue type using
SMOG 2 template files. Rather than introduce a new residue, we will go through the
declarations necessary the modified RNA residue MIA, which is now part of the default

all-atom model.

The residue 2-methylthio-N6 isopentenyl adenosine (MIA) is a modified nucleic acid
residue that is present in many RNA structures. It is nearly identical to Adenine,

though there are a few additional atoms.

7.1 Step 1 - Examine the molecular structure

Make sure to have the correct chemical structure of your molecule. A useful method is

to visually inspect it with a molecular visualization program (e.g. VMD or PyMOL):

MIA3T:C16

Gs7.c15
237:N7 25
h37.c13
[ ¥57.co
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7.2 Step 2 - Create a new All-Atom template directory

Since we’re going to explicitly define each atom in the MIA residue, the example here will
use the all-atom model. When adding a new residue, you can either copy an existing
set of templates, or directly modify the default models. However, if you modify the
default models, you should re-run smog-check to ensure that the baseline models were

not inadvertently altered.

7.3 Step 3 - Define a new residue

As mentioned in Chapter 6, the biomolecular information file (.bif) defines the structure
of all biomolecules in your system. Here we will define the residue information by

declaring all of the atoms, bonds and improper dihedrals within the residue.

7.3.1 Place the new residue tag in the .bif file

As you get acquainted with the AA-whitford09.bif file structure (the default tem-
plates), you'll find that the residues appear grouped together according to their type:
ligands, amino and nucleic residues. The residue type of MIA is nucleic, so it is added
for convenience next to the existing nucleic residues. The <residue> tag encapsulates

all of the residue information.

<!-- NUCLEIC RESIDUES -->

<!--2-methylthio-N6 isopentenyl adenosine-->
<residue name="MIA" residueType="nucleic">
<atoms>
</atoms>
<bonds>
</bonds>
<impropers>
</impropers>

</residue>

<!--RNA A-->

<residue name="A" residueType="nucleic">

LISTING 7.1: Nucleic residue section of .bif file

Keep in mind that the attribute name should match the residue name in the PDB file.
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7.3.2 List all of the atoms in the residue

List all of the atom names in your residue as they appear in your PDB. The <atoms>

tag encapsulates all the atoms in the biomolecule.

2945 <!-- NUCLEIC RESIDUES -->

2946

2947 <!--2-methylthio-N6 isopentenyl adenosine-->

2948 <residue name="MIA" residueType="nucleic">

2949 <atoms>

2950 <atom bType="B_1" nbType="NB_1" pairType="P_1">P</atom>
2951 <atom bType="B_1" nbType="NB_1" pairType="P_1">01P</atom>
2952 <atom bType="B_1" nbType="NB_1" pairType="P_1">02P</atom>
2953 <atom bType="B_1" nbType="NB_1" pairType="P_1">05%</atom>
2954 <atom bType="B_1" nbType="NB_1" pairType="P_1">C5%</atom>
2955 <atom bType="B_1" nbType="NB_1" pairType="P_1">C4*</atom>
2956 <atom bType="B_1" nbType="NB_1" pairType="P_1">04*</atom>
2957 <atom bType="B_1" nbType="NB_1" pairType="P_1">C3*</atom>
2958 <atom bType="B_1" nbType="NB_1" pairType="P_1">03%</atom>
2959 <atom bType="B_1" nbType="NB_1" pairType="P_1">C2*</atom>
2960 <atom bType="B_1" nbType="NB_1" pairType="P_1">02%</atom>
2961 <atom bType="B_1" nbType="NB_1" pairType="P_1">C1*</atom>
2962 <atom bType="B_1" nbType="NB_1" pairType="P_1">N9</atom>
2963 <atom bType="B_1" nbType="NB_1" pairType="P_1">C8</atom>
2964 <atom bType="B_1" nbType="NB_1" pairType="P_1">N7</atom>
2965 <atom bType="B_1" nbType="NB_1" pairType="P_1">C5</atom>
2966 <atom bType="B_1" nbType="NB_1" pairType="P_1">C6</atom>
2967 <atom bType="B_1" nbType="NB_1" pairType="P_1">N6</atom>
2968 <atom bType="B_1" nbType="NB_1" pairType="P_1">Ni1</atom>
2969 <atom bType="B_1" nbType="NB_1" pairType="P_1">C2</atom>
2970 <atom bType="B_1" nbType="NB_1" pairType="P_1">N3</atom>
2971 <atom bType="B_1" nbType="NB_1" pairType="P_1">C4</atom>
2972 <atom bType="B_1" nbType="NB_2" pairType="P_1">S10</atom>
2973 <atom bType="B_1" nbType="NB_1" pairType="P_1">C11</atom>
2974 <atom bType="B_1" nbType="NB_1" pairType="P_1">C12</atom>
2975 <atom bType="B_1" nbType="NB_1" pairType="P_1">C13</atom>
2976 <atom bType="B_1" nbType="NB_1" pairType="P_1">C14</atom>
2977 <atom bType="B_1" nbType="NB_1" pairType="P_1">C15</atom>
2978 <atom bType="B_1" nbType="NB_1" pairType="P_1">C16</atom>
2979 </atoms>

2980 <bonds>

2981 </bonds>

2982 <impropers>

2983 </impropers>

2984 </residue>

2985

2986 <!--RNA A-->

LisTING 7.2: Adding the atoms section to the residue structure

In this example, as in the default models, all bonded interactions (bonds, angles and
dihedrals) are defined the same for all atoms. Therefore, only one atom group needs

to be defined. The bond type (bType) is B_1 for all atoms. The contact interactions
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pairType=P_1 are also defined to be the same for all atoms. However, changing the
mass of a specific atom, such as sulfur (S10) in our example, will require a different
non-bonded definition, since there will be a different excluded volume term. In this

example, the new nbType NB_2 will have to be defined in the .nb file.

7.3.3 List all of the bonds

The chemical structure should tell you how atoms are covalently linked. Inspect those

bonds and add them to the <bonds> section. The <bonds> tag encapsulates all the

bonds in the biomolecule.

<bonds>
<!--BACKBONE-->

<bond energyGroup="bb_n">
<atom>P</atom>
<atom>01P</atom>

</bond>

<bond energyGroup="bb_n">
<atom>P</atom>
<atom>02P</atom>

</bond>

<bond energyGroup="bb_n">
<atom>P</atom>
<atom>05%</atom>

</bond>

<bond energyGroup="bb_n">
<atom>05*</atom>
<atom>C5*</atom>

</bond>

<bond energyGroup="bb_n">
<atom>C5*</atom>
<atom>C4*</atom>

</bond>

<bond energyGroup="bb_n">
<atom>C4*</atom>
<atom>04*</atom>

</bond>

<bond energyGroup="bb_n">
<atom>C4*</atom>
<atom>C3*</atom>

</bond>

<bond energyGroup="bb_n">
<atom>C3*</atom>
<atom>03*</atom>

</bond>

<bond energyGroup="bb_n">
<atom>C3*</atom>
<atom>C2*</atom>

</bond>

<bond energyGroup="bb_n">
<atom>C2*</atom>
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<atom>02%</atom>
</bond>
<bond energyGroup="bb_n">
<atom>C2*</atom>
<atom>C1*</atom>
</bond>
<bond energyGroup="bb_n">
<atom>C1*</atom>
<atom>04*</atom>
</bond>
<!--FUNCTIONAL GROUP-->
<bond energyGroup="sc_n">
<atom>C1*</atom>
<atom>N9</atom>
</bond>
<bond energyGroup="pr_n">
<atom>N9</atom>
<atom>C8</atom>
</bond>
<bond energyGroup="pr_n">
<atom>C8</atom>
<atom>N7</atom>
</bond>
<bond energyGroup="pr_n">
<atom>N7</atom>
<atom>C5</atom>
</bond>
<bond energyGroup="pr_n">
<atom>C5</atom>
<atom>C6</atom>
</bond>
<bond energyGroup="pr_n">
<atom>C6</atom>
<atom>N6</atom>
</bond>
<bond energyGroup="pr_n">
<atom>C6</atom>
<atom>N1</atom>
</bond>
<bond energyGroup="pr_n">
<atom>N1</atom>
<atom>C2</atom>
</bond>
<bond energyGroup="pr_n">
<atom>C2</atom>
<atom>N3</atom>
</bond>
<bond energyGroup="pr_n">
<atom>N3</atom>
<atom>C4</atom>
</bond>
<bond energyGroup="pr_n">
<atom>C4</atom>
<atom>C5</atom>
</bond>
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<bond energyGroup="pr_n">
<atom>N9</atom>
<atom>C4</atom>

</bond>

<!--ADDITIONAL TO "A" FUNCTIONAL GROUP-->

<bond energyGroup="pr_n">
<atom>C2</atom>
<atom>S10</atom>

</bond>

<bond energyGroup="pr_n">
<atom>S10</atom>
<atom>C11</atom>

</bond>

<bond energyGroup="pr_n">
<atom>N6</atom>
<atom>C12</atom>

</bond>

<bond energyGroup="pr_n">
<atom>C12</atom>
<atom>C13</atom>

</bond>

<bond energyGroup="pr_n">
<atom>C13</atom>
<atom>C14</atom>

</bond>

<bond energyGroup="pr_n">
<atom>C14</atom>
<atom>C15</atom>

</bond>

<bond energyGroup="pr_n">
<atom>C14</atom>
<atom>C16</atom>

</bond>

</bonds>

LisTiNG 7.3: Adding the bonds section to the residue structure

Note that the bonds are separated by the comments: BACKBONE,FUNCTIONAL GROUP,
ADDITIONAL BONDS TO ’RNA A’ FUNCTIONAL GROUP. The bond tag attribute energyGroup
classifies the energy group the specific bond belongs to and helps to determine the di-
hedral strengths. The energy group bb_n refers to bonds that belong to the backbone
group, and pr_n refers to the functional group. It is sometimes useful to use an existing
residue as a reference if we know that the new residue only requires minor modifications.

In our example, MTA is a modified RNA A molecule. All backbone and functional group
bonds of RNA A can be added to MIA and we are left to determine the few other bonds
created by the additional atoms: S10, C11-C16. The additions are added under the com-
ment ADDITIONAL BONDS TO ’RNA A’ FUNCTIONAL GROUP with energy group of pr.n.
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7.3.4 List the improper dihedrals

Improper dihedrals cannot be dynamically calculated by the program using the bonds,
and should be added separately. The tag <improper></improper> holds four atoms.

The order of the four atoms here defines a specific improper dihedral within a biomolecule.

How to find an improper dihedral:

An improper dihedral is used to ensure proper geometry about a chiral center (i.e. pre-
vent symmetry inversion due to an absent hydrogen atom). A proper dihedral would be
defined by four sequential atoms connected by bonds (such as the dihedral C4*-C5*-O5*-
P). An improper dihedral is defined by atoms that have a branched bonded geometry.
Those angles need to be identified using the chemical structure of the molecule. For ex-
ample we consider the four carbon atoms: C13,C14,C15,C16 and their bonds as defined
above (highlighted in orange).

Finally, we add all of the improper dihedrals to our residue. In our example there is

only one additional improper dihedral described above.

Add the improper dihedrals section to the residue structure:

<impropers>



3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142

1
2
3

Chapter 7. Adding a new residue definition 56

<improper>
<atom>C3*</atom>
<atom>C4*</atom>
<atom>C5*</atom>
<atom>04*</atom>

</improper>

<improper>
<atom>03*</atom>
<atom>C3*</atom>
<atom>C4*</atom>
<atom>C2*</atom>

</improper>

<improper>
<atom>02*</atom>
<atom>C2*</atom>
<atom>C1*</atom>
<atom>C3*</atom>

</improper>

<improper>
<atom>C2*</atom>
<atom>C1*</atom>
<atom>04*</atom>
<atom>N9</atom>

</improper>

<!--ADDITIONAL IMPROPER DIHEDRAL TO "RNA A" -->

<improper>
<atom>C13</atom>
<atom>C14</atom>
<atom>C15</atom>
<atom>C16</atom>
</improper>
</impropers>

</residue>

LISTING 7.4: Adding the improper dihedrals section to the residue structure

7.4 Step 4 - Define a non-bonded group in the .nb file

Adding a new atom of a different mass requires a creation of a new non-bonded parame-
ter definition. In our example we chose the atom sulfur to have a mass that is twice the
mass of carbon. A new <nonbond> tag is added and it encapsulates the new non-bond
group information such as mass charge and other non-bonded terms. The mass is dou-
bled in the mass entry. The nbType includes the previously defined group name NB_2
that is consistent with the .bif file. Adding a new non-bonded group in the .nb fie:

<?xml version=’1.0’7>
<nb>
<!-- DEFAULTS -->
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<defaults gen-pairs="0"/>
<!-- GENERAL NONBONDS -->
<nonbond mass="2.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">
<nbType>NB_2</nbType>
</nonbond>
<nonbond mass="1.00" charge="0.000" ptype="A" c6="0.0" c12="5.96046e-9">
<nbType>NB_1</nbType>
</nonbond>
<!-- CONTACTS -->
<contact func="contact_1(6,12,7,?)" contactGroup="c">
<pairType>*</pairType>
<pairType>*</pairType>
</contact>

</nb>

LISTING 7.5: Defining a new non-bonded group in the .nb file
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Additional supported options

As described above, it is the aim of SMOG 2 that the user will be able to extend
the models in a wide range of ways. Accordingly, it is not possible that we provide
descriptions of every possible variation that one may explore. However, here, we make
an effort to provide some examples of how to implement specific features that we think

may be frequently of interest.

8.1 Adding non-standard bonds between specific atoms

There are often cases where the covalent geometry of the system can not be determined
by a general set of rules. For example, disulfide bonds may be formed, or broken,
depending on the oxidation state. As another example, sugar structures often have
branching patterns, and do not form linear chains. For these types of chemical bonds,
we provide the BOND option in the PDB file. If you would like to add a chemical bond,
then add BOND lines immediately after the END line in the PDB file. The formatting is
the following:

BOND ChainIndexl AtomIndexl ChainIndex2 AtomIndex2 energygroup

ChainIndex1 and AtomIndex1 indicate the first atom involved in the bond. ChainIndex1
is the index of the chain in which the atom exists, starting at 1. AtomlIndex1 is the
number of the atom, as it appears in the PDB file. Note, Chainlndex1 is not necessarily
the chain ID. ChainIndex2 and AtomIndex2 indicate the second atom involved in the
bond. energygroup indicates the properties of any dihedral angles that have the new
bond as a middle bond (See Chapter 6 for discussion on energy groups). For example,

the following line:

BOND 1 51 4 100 r_p
58
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would add a chemical bond between the atom numbered 51 in the first chain and the
atom numbered 100 in the 4th chain. The bond properties would be determined based on
the .b file settings, and the energy group of any associated dihedrals would be r_p. When
SMOG 2 runs, it will write information to the screen as the BOND lines are detected. It
will also write out information about what it interpreted the lines to mean, so you can
verify that the intended bonds are being added. Note: any bond angles that may be
constructed using the BOND definition will be automatically generated. However, only
dihedrals that have the new bond as the central bond will be added. This is a slight

limitation in the software, but it is unlikely to be significant for most applications.

8.2 Including non-specific interactions in a SMOG model

One of the goals of SMOG 2 is to allow one to “mix and match” elements of SMOG
models and more highly-detailed energetic models (e.g. AMBER or CHARMM). For
this, we have introduced the ability to define bonds, angles and dihedrals “by type”. For
example, if you would like all bonds between atoms of bType=B_1 and bType=B_2 to
be given AMBER parameters, you could include the AMBER definition in the “extras”
file (or any file with the suffix “extras” within the template directory) and then define
the bond of type bond_bytype in the .b file. In this example, the .b file would have

<bond func="bond_bytype()">
<bType>B_1</bType>
<bType>B_2</bType>

</bond>

while the extras file would have
bondtypes < C 0S 1 0.1323 10000

Notice in this example that the atom names in the extras file do not need to correspond
to the values used for bTypes. This is intentional. In SMOG 2, each atom is assigned a
bType, nbType and pairType. When determining which interaction to assign to a bond,
the bType is read. However, when using bond_bytype, the bondtype read by Gromacs
will be the atom type (which is the nbType in SMOG 2). So, in this example, if a
residue were to have a C-O bond, and the C atom were bType=B_1 and nbType=C,
while the O atoms were bType=B_2 and nbType=0S, then the bondtype parameters
would be used in the top file. When these templates were used to generate a top file,
it would only list the atom numbers in the bonds section, while the parameters would

appear under bondtypes.
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The extras file may be used to add content to any supported directive. However, non-
bond_params, bondtypes, angletypes and dihedraltypes lines are only written if the atom
types for each definition are used in a given SMOG model and simulated system. This

ensures that the top file only contains information that is required for the given system.

For complete examples where AMBER terms have been added to SMOG models, see
the SMOG 2 Force Field Repository.

8.3 Including perfectly free angles, dihedrals and contacts

In order to allow specific combinations of atom types to be given no interaction, the
“free” interaction functions (angle_free, dihedral free, and contact_free) are sup-
ported. They can be used as function types in the .b or .nb file. As an example, suppose

you added a FRET dye as a new residue into the .bif:

<residue name="A594" residueType="ligand">

<atoms>

<atom bType="C" nbType="DYE" pairType="free">C1</atom>
<atom bType="C" nbType="DYE" pairType="free">C2</atom>
<atom bType="C" nbType="DYE" pairType="free">C3</atom>

</atoms>

</residue>

To ensure that no native contacts would be defined with the FRET dye, the contact_free

function must be used in the .nb file:

<contact func="contact_free()" contactGroup="c">
<pairType>free</pairType>
<pairType>*</pairType>

</contact>

Further, in order to ensure that exclusions are also not added for atoms that were
identified as “in contact” (according to whichever contact protocol you have selected,
such as Shadow, or cut-off), then you need to make sure that the function is declared in
the .sif file, where the exclusions are explicitly disabled by setting the “exclusions” tag

to zero:


https://smog-server.org/smog2/template_repo/
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<functions>

<function name="contact_free" directive="pairs" exclusions="0"/>

</functions>

Together, this example would ensure that an atom of pairType free that is interacting
with any other type (*) will be given a function contact_free, which adds nothing to
the top file. As a note: matching angle free also nullifies any dihedrals containing the
angle. Using free functions will not change the normalizations for contact and dihedral
interaction strengths, i.e. the contacts and dihedrals not written to the .top are still
counted in the normalization sums. If you disable normalizations, then this will not be

an issue.

8.4 Adding electrostatics

While not part of the default structure-based models distributed with SMOG 2, there
are often times where it is desirable to add some degree of electrostatic interactions, or

one would like to use interactions that are not of the 6-12 form.

There are two ways to introduce charges in your system. First, you can define the charge
for a nbType in the .nb file, as shown in Listing 6.7. This will tell SMOG to assign a
charge to every atom of the specific nbType. The second way to add charges would be
to define charges for specific atoms within a residue type, in the .bif file, as shown in

Listing 6.1.

By default, Gromacs will treat electrostatic interactions as purely Coulombic. If you
would like to use a screened electrostatic interaction (i.e. Debye-Hiickel), then you need
to supply a table. The tool smog_tablegen will generate a screened-electrostatic look-up

table, as described by Givaty and Levy[11].
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Energetic Description of the
Distributed Models

A.1 The All-Atom model

This model is selected with the —AA flag. All non-hydrogen atoms are explicitly rep-
resented, and the provided structure (i.e. the input PDB structure) is defined as the
global potential energy minimum. Here, we provide a complete description of the de-
fault all-atom structure-based model energy function, which is defined by the template
SBM_AA. All calculations employ reduced units (see A.4). Each atom is represented as
a single bead of unit mass, and the charge of each atom is set to zero. Covalent geometry
is maintained through harmonic interactions that ensure the bond lengths, bond angles,
improper dihedral angles and planar dihedral angles remain about the values found in
input structure. Non-bonded atom pairs that are in contact in the provided structure
between residues ¢ and j, where ¢ > j + 3 for proteins and i # j for RNA, are given an
attractive 6-12 potential. The minimum of each 6-12 interaction is set to the distance
of that atom pair in the provided structure. All non-native interactions between atoms
that are not in contact in the native structure are repulsive. Contacts were defined
according to the Shadow algorithm (See Chapter 5.7, with an all-atom cutoff distance
of 6 A and a shadowing radius of 1 A. The functional form of the potential is,
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€r €p
V= 5(?”2‘ —ri0)* + Z 5(91' — 0:0)°+
bonds angles
€y €
Zimpropers X2 3 (Xi - Xi70)2 + zplanar Xp12a - (Xi - Xi,O)Q
+ > emBFp(di —dio)+ Y. escFp(di — ¢io) (A1)
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contacts non—contacts

where,

Fio(8) = [1 — cos(6)] + 51 — cos(30) (42)

When using SMOG 2, all values may be adjusted by the user, such as defining stabilizing
non-native interactions and including non-specific dihedral angles. However, for the
default model r; o, 6;0, Xi,0, ¢i0 and o;; are given the values defined by the provided

structure. For the default model, the parameters are set to the following values:

e = 100e/A?, ¢y = 80¢/rad?, €ximp = 10€/rad?,
2.5A, e =1.

Expranar = 40¢/rad?, exc = 0.1¢, ong =

Note that, relative to the original implementation of this model, €, is decreased by a
factor of two, €y is increased and enc is increased from 0.01e to 0.1e. Also, w dihedrals
are given the strength e, . As discussed in the SMOG 2 manuscript [12], this allows
for a timestep of 0.002 to be utilized, which is larger than the originally-implemented
0.0005. € is the reduced energy unit (see A.4) and has the value of 1 in the .top file
which is equivalent to 1 kJ/mol if interpreted in Gromacs units. When assigning dihedral
interaction weights (epp and egc), dihedrals are first grouped if they have a common
middle bond. For example, in a protein backbone, there are up to four dihedral angles
that may be defined that have the C' — C, bond as the middle bond. Each dihedral
group is given a summed weight of epp, or esc. The ratio Rgp/sc = ?:—CB is set to 1
for nucleic acid dihedral angles and 2 for protein dihedral angles. egp for protein and

nucleic acids are equal. Dihedral strengths and contact strengths are scaled such that:

_ >« _
RC/D T Y eBB+t) esc 2

d_€c+ Y eBB+ ) esc = Ne

The sums are over all dihedral angles in the system, and N is the number of atoms in

the system.

Note: The rescaling of dihedrals based on common middle bonds may not always desired.
To explicitly indicate whether this feature should be enabled, add the following child

element within the settings element in the .sif file
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<dihedralNormalization dihedralCounting="0" />

0 indicates that counting should be turned off. 1 (default) indicates that counting should

be performed.

A.2 The C, model

This model is selected with the -CA flag. The C, model coarse-grains the protein as
single bead of unit mass per residue located at the position of the a carbon. xg denotes
the coordinates of the native state and any subscript 0 signifies a value taken from the

native state. The potential is given by

Voo (X, x0) = Z%(T—To)Q-i- Z %0(9—90)24- Z epFp (¢ — ¢o)

bonds angles dihedrals

o X () )] T ae(2)

T j
contacts non—contacts

where the dihedral potential Fp is,

Fi(9) = 1~ cos()] + 51— cos(36)] (A.4)

The coordinates X describe a configuration of the a-carbons, with the bond lengths to
nearest neighbors r, three-body angles 6, four-body dihedrals ¢, and distance between
atoms 7 and j given by r;;. Protein contacts that are separated by less than 3 residues
are neglected. Excluded volume is maintained by a hard wall interaction giving the
residues an apparent radius of oxcg = 4 A. The native bias is provided by using the
parameters from the native state xg. Setting the energy scale ¢ = 1, the coefficients are

given the homogeneous values: €, = QOOE/AZ, €9 = 40¢/rad?, ep = ec = eng = €.

A.3 Gaussian contact potential (4gaussian templates)

Gaussian-shaped contact potentials (Fig. A.1) are available in an unofficial version of

Gromacs that is available at smog-server.org, as well as in NAMD (see section A.3.4).
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These potentials are used when one desires control over either the shape of the ex-
cluded volume or the width of the attractive potential. They are also useful if a sin-
gle contact requires multiple minima. In-depth characterization of the Gaussian po-
tentials with all-atom structure-based models using SMOG can be found in [9] (tem-
plates/SBM_AA+gaussian). They are explored in the context of a multi-basin C, model
here [13] (templates/SBM_calpha+gaussian).

A.3.1 templates/SBM_A A+gaussian

This template can be selected using the -AAgaussian option. Selecting this template
changes the contact potential to ftype = 6, e¢=7, rog=7, a:\/m, and enforces
rNc=0.21 nm. 7“11\120 = eNnc X 01{120, i.e. the non-native excluded volume term, with exc =
0.1 and onx¢ = 0.25 nm. The rather complex definition of the width of the Gaussian
well o is designed to model the variable width of the LJ potential: Cr,j(1.2r9) ~ —1/2
so o is defined such that G(1.2ry) = —1/2 giving 0% = (19)?/(501n 2).

e Note: v2.0 and earlier had rnc=0.17 nm, i.e. exc = 0.01le and 01{120 = 0.25 nm.

A.3.2 templates/SBM calpha-+tgaussian

This template can be selected using the -CAgaussian option. Selecting this template

changes the contact potential to ftype = 6, ec=7¢, ro="7 nm, 6=0.05 nm, rnc=0.4 nm.

T T lll T T
— LJ6-12
—-=-LJ10-12 _
— Gaussian

I
|
|
: = - Multi-basin
|
|
|

FiGUurRE A.1: Comparison of Lennard-Jones and Gaussian contact potentials. Black

curves show LJ contact potentials with minima at 6 A and 10 A. The Gaussian contact

potential shown in green has an excluded volume on¢ (called rnc elsewhere in the

manual) that can be set independently of the location of the minimum. The dotted

green line shows how the Gaussian contact would change as another minimum at 10 A
is added. Image adopted from [1].
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A.3.3 Dual basin Gaussian potential

This is not yet implemented as a function in SMOG 2, but the syntax of ftype= 7 can
be found on the SMOG webserver.

A.3.4 Downloading the source code extensions
A.3.4.1 Gromacs

The Gaussian contact shapes are not available in the standard Gromacs distributions.
The necessary source code can be obtained at http://smog-server.org/SBMextension.html.

This source distribution is compiled exactly as any other Gromacs source distribution.

A.3.4.2 NAMD

Currently the “nightly build” version of NAMD contains the Gaussian potentials in the

“Go potentials” section. More information can be found in the NAMD manual.

A.3.5 Including Gaussian potentials in the topology files
A.3.5.1 Gromacs

The Gaussian interaction is designated in the [ pairs ] section of the topology file.

e ftype = 6

_ 1 TG (rij—r5;)?
1] ]

— 7“11\120 = eng X 011\12(1, where enc and onc come from the non-native excluded

volume c12 term.
— ¢c — depth of the attractive well
— 70 — position of the minimum of the attractive well in nm
— 0 — width of the attractive well in nm
12

— rll\fc — position of the excluded volume hard wall in nm

— This form includes an excluded volume part, and therefore the pair ij should
be included in [ exclusions ]. The multiplicative form anchors the mini-

mum of the well at (g, —€c).

Note that ftype = 5 and ftype = 7 exist in the SBM extensions version, though there
is no implementation in SMOG?2 at the moment. They can be added by hand if desired.


http://smog-server.org/extension/gauss.html
http://smog-server.org/SBMextension.html
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A.3.5.2 NAMD

Currently the “nightly build” version of NAMD contains the Gaussian potentials in the

“Go potentials” section. More information can be found in the NAMD manual.

A.4 Reduced units

SMOG topology files are written in reduced units, meaning that the masses, energies,
and Boltzmann’s constant are unitless and given a value of unity. (Note that lengths
are written with units of nanometers for readability.) For example, this means that the
all-atom model gives a mass of 1 to all the atoms with weights near 12 amu and the
C-alpha model gives a mass of 1 for each coarse-grained residue bead. In such a scheme,
the physically meaningful temperature is then near 1 (i.e. kg7 ~ 1). Independent of
reduced units, interpreting the simulation temperatures used in SMOG models as real
world temperatures is problematic because of the effective energetics mixing energetic
and entropic terms in a simplified potential. Gromacs adds an additional caveat to
the expression of reduced temperatures because Gromacs uses a hard-coded value of
Boltzmann’s constant (kp) of 0.00831451 in Gromacs units of kJ/mol/K. Thus, a reduced
temperature of 1 is expressed as 1/0.00831451 = 120.27 in a Gromacs .mdp file. You
will find that proteins will typically unfold at reduced temperatures of 1-1.3 or Gromacs
temperatures of 120-155. For a discussion of mixing externally known energetic terms
with the effective energetics in SMOG (or equivalently, trying to estimate the reduced

energy unit in physical units), see section S1 of reference [14]. f
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Installing Perl Modules using
CPAN

B.1 Introduction

When installed Perl modules, it is often easiest to use CPAN, rather than manually
installing the RPMs. Here we provide an introduction to CPAN to get you started.
CPAN (“Comprehensive Perl Archive Network”) is a collection of over 100,000 Perl
modules ready to be installed. It is a great tool for easily adding Perl modules or

updating your version of Perl.

B.2 Installing CPAN

Here we introduce installation for Linux and OSX. CPAN can be installed using the
command line. If you have root privileges and are using the system Perl located at
/usr/bin/perl, then it’s easier to install via the package management system of your

Linux or OSX distribution. You can explore CPAN options by typing “7”.

RedHat /Fedora/CentOS Linux:
> sudo yum install perl-CPAN

Debian/Ubuntu Linux:

1. Install all dependent packages for CPAN:
> sudo apt-get install build-essential
2. Invoke the cpan command:

> cpan
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3. Enter the commands below:
> make install

> install Bundle: :CPAN

OSX on Mac:

Before you can use CPAN, you need to configure your Mac appropriately. CPAN uses
some low-level tools to install modules, therefore tools like “Xcode” or the “Command
Line Tools for Xcode package” are necessary. These are available at the Apple’s De-
veloper site. You should also have a terminal or shell application downloaded from the
App store.

From the terminal application type the following and hit enter:

> cpan

This will take you through the installation process with more potential questions. You

can enter “yes” for every question.

B.3 Upgrading your perl version using CPAN

You can upgrade your CPAN and perl version if it is not up to date. This step is
recommended before installing any other modules.

1. In the CPAN application type:

> upgrade perl

2. If your perl or CPAN is not up to date, you can upgrade it:

> install CPAN

> reload cpan
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cpan[2]> upgrade perl
CPAN: Storable loaded ok (v2.51)

Reading '/root/.cpan/Metadata’

Database was generated on Fri, 18 Dec 2815 18:29:82 GMT
CPAN: LWP::UserAgent loaded ok (v6.06)
CPAN: Time::HiRes loaded ok (v1.9726)
Fetching with LWP:
http://www.perl.org/CRPAN/authors/@1lmailrc. txt.gz
CPAN: YAML loaded ok (v1.13)
Reading '/root/.cpan/sources/authors/@lmailrc.txt.gz’
CPAN: Compress::Zlib loaded ok (v2.867)

Fetching with LWP:

http://www.perl.org/CRPAN/modules/62packages.details. txt.gz

Reading '/root/.cpan/sources/modules/@2packages.details.txt.gz’
Database was generated on Wed, 22 Jun 2816 18:53:39 GMT

New CPAN.pm version (v2.18) available.
[Currently running version is v2.85]
You might want to try
install CPAN
reload cpan
to both upgrade CPAN.pm and run the new version without leaving
the current session.

Fetching with LWP:
http://www.perl.org/CPAN/modules/83modlist.data.gz
Reading '/root/.cpan/sources/modules/@3modlist.data.gz’
DONE

Writing /root/.cpan/Metadata

ALl modules are up to date for perl

cpan[3 >I

B.4 Example installation of a Perl module

Here we show an example of how to install the Perl module String::Util using CPAN.
1. Open your CPAN application as root (recommended) and type in:

> install String::Util

2. You should see some output messages in your terminal. If the installation is successful,
you should see an output saying “Installation Complete” or “Build install OK”.

This means you can go ahead and start using the module within your Perl scripts.

B.5 Troubleshooting tips

e Unsuccessful installation - Start by looking at the first error message that was out-
put to the screen. Most likely there are missing libraries that are required before

installing your module. It’s recommended that you install those missing libraries
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one by one, as instructed in the output messages. After installing the missing

libraries, try the installation of the modules again.

e Changing the Perl version linked to CPAN - as mentioned earlier, by default CPAN
works with the system Perl located at /usr/bin/perl. It can sometimes help to
work with a different Perl version if your system Perl version is damaged and you
cannot install modules properly. You can change which version CPAN sees by
replacing a single line in the CPAN executable script:

(i) Check the full path of CPAN executable by:

> which cpan

Usually the executable file is: /usr/local/bin/cpan

(ii) Open (as root) the executable file, for example using vi:

> vi /usr/local/bin/cpan

3 eval ’exec /usr/bin/perl -S $0 ${1+"$e"}’

LisTING B.1: CPAN default code

(iii) Change the following line (line n.3) to include the full path of the version

you’d like to use:

3 eval ’exec /full/path/new/perl/version -5 $0 ${1+"$@"}’

ListiNnGg B.2: CPAN updated code

Save the changes in the file. The next time you use CPAN; all of the newly installed

modules will be linked to the new perl version.
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FAQs and Tips

Why is grompp so slow when using SMIOG models?

In an effort to reduce the size of .tpr files, grompp tries to find parameters that are
common (e.g. contacts with the same c6 and c12 parameters). In SMOG models, most
contacts have unique parameters. This can lead to a very large number of unique pa-
rameters, which are then compared against all other parameters in the .top file. As
a result, grompp executes a nested for loop that has increasing bounds (essentially an
N? calculation). For small systems (less than ~ 10,000 atoms), this tends not to be
a problem. However, for systems of 100,000 atoms or greater, grompp can easily re-
quire hours to complete. Since this bookkeeping feature of grompp does not appear
to impact the performance of mdrun for SMOG models, it is desirable to disable this
parameter comparison. To disable this check, you can make a one-line modification
to the source code and rebuild Gromacs. For Gromacs v4.6.5, you will want to edit

src/kernel/convparm.c. Specifically, go to line 465, which reads:

if (!'bAppend)

and replace it with

if (0)

For Gromacs 5.1.4, the corresponding code can be found on line 542 of
src/gromacs/gmxpreprocess/convparm. ¢

We have found that this modification results in a .tpr file that is 20-60% larger, though
grompp can 100-1000 times faster.
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I used smog_adjustPDB and when I run SMOG2 I get the error“FATAL ER-
ROR: It appears that a residue in the PDB file does not contain all of the
atoms defined in the .bif file.”. What is wrong?

If you are NOT using the -legacy option: The only real explanation for this is that you
are not using a mapping file that is consistent with the templates. If you are using
default models, then you can use the default mapping file. However, if you are using
non-standard templates, then you may need to use the -map option to specify which

mapping file to use.

If you are using the -legacy option: Sometimes, this error arises because there were
missing atoms in the PDB file (e.g. some atoms may have not been resolved in the
crystallographic model). If you are convinced that all atoms are present, then there
is another possibility. When you use smog_adjustPDB, it makes its best guesses for
how residues should be named. For example, a 5-terminal RNA residue (say G) will
be renamed with a 5 added to the residue name (G5). In the default templates, G5
is defined as a residue that has a terminal phosphate group, however most PDB files
are lacking these atoms. The appropriate name for a phosphate-less terminal G would
be GOP (zero, not O). If this is the case, you can provide your own mapping file for

smog_adjustPDB, or you can manually edit the residue names in the pdb file.
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